Reference Radie fhaek
TRS-80
Manual MICRO
COMVMIPUTER
SYSTEM
Contents
1. General Information
2. Mini Disk Operation
3. TRSDOS Overview
4. TRSDOS Commands
5. Extended Utilities
6. TRSDOS Technical Information
7. DISK BASIC
8. Appendices
index

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK g A DIVISION OF TANDY CORPORATION

TRSDOS &
DISK BASIC
Reference
Manual

For the Radio Shack TRS-80
Disk Operating System
TRSDOS Version 2.3

DISK BASIC Version 2.2

ORPORATION

E A DIVISION OF TANDY C

One Tandy Center
Fort Worth, Texas 76102

First Edition — 1979

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any man-
ner, is prohibited. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the preparation
of this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information con-
tained herein.

© Copyright 1979, Radio Shack

A Division of Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.

1098765432

Software Copyright Notice

All TRSDOS and DISK BASIC software is copyrighted by
Radio Shack. Radio Shack grants each TRSDOS user the
privilege of making BACKUP diskettes of TRSDOS and
DISK BASIC, provided such diskettes are solely for per-
sonal use.

Any other duplication of TRSDOS or DISK BASIC soft-
ware, in whole or in part, in print or in any other storage-
and-retrieval system, is forbidden.

Printed in the United States of America

To Our Customers

This is a reference manual, and its organization reflects the relationship between
TRSDOS and DISK BASIC. TRSDOS is the fundamental software, so it's described
first. DISK BASIC is a language supported by TRSDOS, so it’s described after
TRSDOS. (If other languages are supported later, they’ll plug right in to this manual
along with DISK BASIC.)

But don’t think you have to read the manual in strict sequence. If you're an old hand at
LEVEL II BASIC and you want to start out with DISK BASIC, go ahead and skip to
Section 7. You can refer back to the TRSDOS sections later on when you're ready or
when you need them.

We hope you enjoy exploring this powerful new computer system!

How to Use This Book

Read

| Read and use
Sections |42 Sections 3-3
|
YES
Skim
Sections 3¢ 4 YES

General
Information

Contents of This Section

IRTOEIMBOEMIEY v i 5 i 50 im r 50k 555 m = Sk 85! 7 e B o 8 smcre ekl § o B 3 2
NotationConventions -
VersionsandReleases a8 o s & e A 6

Section 1 - Page 1

General Information

Introduction

This book is a combined operation and reference manual for the
TRS-80 Disk Operating System. It will tell you how to operate the
hardware and how to use the software.

For many of you, there will be more than enough information. (“All
I want to do is use the Computer, not understand it!”’) Don’t worry,
this book is designed so that you can start programming in DISK
BASIC (if that’s what you want to do) right away. All you have to do
is read the chapter on Mini Disk Operation . . . skim through TRSDOS
Overview and TRSDOS Commands . . . and on to DISK BASIC.

But DISK BASIC is just one aspect of TRSDOS. It’s not a

part of TRSDOS, but a program that TRSDOS executes. Using

DISK BASIC without any awareness of the capabilities of TRSDOS

is rather like riding in a Pullman car without any knowledge of the
engine, freight cars, diner and other parts of a train. It’s true that
TRSDOS will do all that’s necessary to let you ride comfortably along
in BASIC; but eventually you’re going to want to have a say in where
the train goes, what its schedule is, and what goes in all those freight
cars. That’s when you need to understand TRSDOS.

The illustration below shows the relationship between the Computer,
Expansion Interface and Mini Disk Drives.

The first drive(Drive 0) always contains the TRSDOS
diskette, which is pre-recorded with the Operating System
software: an executive program, and several auxiliary
programs, including DISK BASIC. The executive program
is loaded into the first 4K bytes of RAM, and stays there
while TRSDOS is in control. The auxiliary programs

are loaded as needed.

Second, third and fourth drives can contain data
diskettes, for storing your programs and data.

—r——— =
The Expansion Interface contains the real- e e e
time clock, disk controller IC, and optional

extra RAM (addresses above 32767). pb——

The Keyboard/Computer contains a built-in (ROM) —J
program which takes over at power-up, and loads

the TRSDOS executive program from the system

diskette (in Drive (). If the Mini Disk equipment is

not connected, this ROM program can transfer control

to LEVEL 11 BASIC.

1-2

General Information

One section of this book you should definitely become familiar with
is the Glossary. We've tried to give definitions for all the “computer
words” and everyday words with special meanings in this book. Even
if you've heard all the terms, you’ll gain some useful information
from the Glossary, because it’s customized for the TRS-80.

First you make a BACKUP. ..

You received one TRSDOS diskette with your Mini Disk drive 26-1160.
This diskette contains the operating system software. Without this
disk, you haven’t got a disk operating system.

So, your first disk operation . . . before you remove the write protect
tape from the TRSDOS diskette . . . should be to duplicate TRSDOS
onto a blank diskette. You'll find abbreviated instructions for making
a duplicate (BACKUP) of your TRSDOS diskette at the end of the
Mini Disk Operation chapter.

Notation Conventions

In descriptions of syntax for commands, statements and dialog with
the Computer, we’ll use the following conventions for clarity and
brevity.

b This special symbol represents a mandatory
blank space. Unless it is specified, any
blanks that appear in the syntax are optional.
Example:
DIRY: 1
The blank space is required after the R.

“Press the [AYMERD key.”

< SPACE> “Press the space-bar.”
CAPITALS and Indicate material which must be entered
punctuation exactly as it appears. The only punctuation

symbols not entered are the special cases
(brackets and triple-period . . .) explained
below.

Example:

LOAD filespec”

Only the command LOAD and the quote
marks are entered verbatim; you supply
the filespec.

1-3

General Information
|

Notation, continued

} Represent input you supply, upon prompt-
ing from the Computer. This convention
will only be used where necessary to
distinguish between Computer prompting
and user input.

Example:

HOW MANY FILES? 5 ENRER

The Computer asks the question, and you
answer it.

lowercase italics Represent words, letters or values you
supply from a set of acceptable values for
that situation.
Example:
var = exp
A variable name goes on the left, and an
expression goes on the right.

[] Brackets enclose optional material.
Example:
CLOSE][filenum]
filenum (the file number) is optional after

CLOSE. The brackets are not actually
typed in.

The triple-period symbol inside brackets
indicates that preceding items in the
brackets may be repeated.

Example:

INPUT[“prompting message’’ ;] var|,var. ..)
The INPUT variable-list may include

more than one variable. The periods are
not actually typed in.

var([,...]) Signifies an array. If no commas are
placed inside the parentheses, a
one-dimensional array is intended;
1 comma indicates a two-dimensional
string array; etc.
Examples:
AS(,) indicates a two-dimensional
string array.
B1() indicates a single-dimensioned
array.

1-4

General Information

Notation, continued

exp
var

nmexp

nmvar

exp$

var$
con
nmcon

con$

numerical
suffixes

String or numerical expression
String or numerical variable name

Numerical expression, including constants,
variables, functions

Numerical variable name

String expression, including constants in
quotes, variables, functions and operators

String variable name
Constant, either string or numerical
Numerical constant

String constant

Attached to distinguish between different
arguments and parameters of the same type.
Example:

COPYbfilespecl YTOWfilespec?2

1-5

General Information

Versions and Releases

Some of you may be a little confused about the terminology,
“Version X.Y”. The X" and “Y" will change as TRSDOS is
updated, so here’s an explanation.

A new version represents a substantial expansion of the previous
version. For example, new utilities, high-level languages, etc., might
be included in a new version. Such versions are numbered by the
integers 1, 2, 3,

A new release, on the other hand, is simply an update of the previous
release of a given version. This later release generally includes wider
implementations and enhancements of commands and fixes for any
problems in the earlier release. The releases are numbered by
decimal fractions, .1, .2, .3,

Therefore, when we refer to Version 2.3, that’s short for the third
Release of Version 2.

Note: This Manual describes TRSDOS Version 2.3, and DISK

BASIC Version 2.2. The Manual will be updated as required by
later versions and releases,

1-6

Mini Disk
Operation

mI>SOD>I

Contents of This Section

Introduction 2
CONNBCHION . . v v oo on s mom s o 0 206 5 508 6 5605 508 5 0k & 0K 3 38 5 %8 5 0 3 3
Operationiii i 5
Careof Diskettes i 8
Specifications 10
Schematicst 11
Making a TRSDOS BACKUP oviuwrvninsinsonss 16

Section 2 - Page 1
ARSI ER R RS TR T IR T A T
S e O S S Y T A PN I B LD S e T

Scanned by Ira Goldklang — www.trs—80. com

Mini Disk Operation

Introduction

The TRS-80 Mini Disk drive is a mass storage device custom
manufactured for use with the TRS-80 Microcomputer. It combines
the compactness of a cassette recorder with the high-speed, reliable
data access of the larger disk drive units. Information is magnetically
recorded on and read from flexible (“floppy™) diskettes.

In simplified terms, the Mini Disk consists of a magnetic read/write
head, similar to that on a tape recorder; a stepper motor to move the
head across the diskette surface; a drive motor and hub assembly to
rotate the diskette; and the necessary logic circuitry to control

the read/write process and the motor speed. See Figures | and 2.

There are two types of drives,
distinguished by their Radio
Shack Catalog Numbers,
26-1160 and 26-1161. Your
disk system must include one
(and only one) 26-1160 and
may include up to three
26-1161 drives.

Included with 26-1160

Drive unit: Incorporates
special terminating resistors
not present in the 26-1161
units.

Interconnect cable: For con-
nection of 26-1160 and up to . L)
three optional 26-1161 drives Figure 1. Mini Disk Drive.

to the Expansion Interface. MAGNETIC READ/WRITE HEAD

WRITE PROTECT SWITCH

1 TRSDOS diskette: Contains
the operating system software,
utilities, DISK BASIC, etc.

DISK CONTROLLER INDEX SECTOR LED

Included with each 26-1161

/ STEPPER MOTOR

Drive unit: Does not incorpo-
rate terminating resistors.

MAGNETIC
READMRITE HEAD

Blank diskette: Can be
formatted or backed up for
use with TRSDOS.

SPINDLE HUB ASSEMBLY

Figure 2. Functional components in a Mini Disk drive.

2.2

Mini Disk Operation

Connections

The power to all components in the TRS-80 system should be *‘off”
while you make connections.

Look at the ribbon-type connector cable included with your 26-1160
Mini Disk drive. Notice that the cable has four edge card connectors
through its length, and a single connector at the other end. Connect
the single plug to the edge-card jack on the left rear of the

Expansion Interface, as shown in Figure 3. Be sure the plug is
oriented so the cable exits from the bottom.

Before connecting the Drive(s) to the cable, note the following rules:

1) 26-1160 must always be the “terminal” or final drive on the
cable; that is, of all your drives, it must always be the farthest
away from the Expansion Interface. This is because it includes
the terminating resistors mentioned above.

2) The connector closest to the Expansion Interface must always
be plugged in to a drive. The other connectors can be
“empty".

LEFT REAR OF EXPANSION INTERFACE
{MINI-DISK CONNECTION)

SINGLE PLUG

Q Q ﬁ:::—

CABLE MUST EXIT AT BOTTOM — =
FOR PROPER CONNECTION. ==——

i
prp————————
o 2

RIBBON TYPE CONNECTOR CABLE

Figure 3. Connecting the ribbon cable to the Expansion Interface.

2-3

Mini Disk Operation

Connect each Mini Disk
unit to the cable, taking B |
care to orient the plug
properly as shown in
Figure 4. Inside each
plug is a small plastic
connector. If the plug
doesn’t mate properly,
check to see that the

ON/OFF SWITCH
— I

EDGE CARD
CONNECTOR

plug is oriented so the
pin lines up with the
slot.
GUIDE PIN _] \ _—l’
Figure 4. Connecting the cable to the Mini Disk.
Examples:

If you have just one drive (must be 26-1160), then connect it to the
first connector plug, so as not to leave any empty connectors between

the Drive and the Expansion Interface. Leave the last three connectors
empty.

If you have two drives, then connect 26-1161 to the first connector
and 26-1160 to the second connector. Leave the last two connectors
empty.

Figure 5 shows a Mini Disk system with four drives connected.

Connect each Mini Disk to a source of 120 VAC, using the power cord

provided. Be sure the drives are at least 6 from the left side of the
display.

Figure 5. A complete four-drive Mini Disk System.
s eSO e o e S|

2-4

Mini Disk Operation

Drive Numbering

TRSDOS requires at least one Mini Disk drive, and can handle up to
four. Under TRSDOS, these drives are referred to as drives 0,1,2 and 3
(where drive 0 is closest to the Expansion Interface, and drive 3 is
farthest away). See Figure 5. These designations cannot be changed
they are built into the ribbon cable connector.

When the Computer attempts a bootstrap operation (power-on or
reset), it will automatically attempt to load TRSDOS from drive 0.
Therefore a TRSDOS diskette must be in drive 0 when you power on
or reset the Computer. In fact, the TRSDOS diskette should always
remain in drive 0 while TRSDOS is in use, except in special cases.

Operation

Before powering on the disk system, you need to understand a few
things about how the drives work.

The disk drive does not rotate continuously while it is ““on™. It only
rotates when a Motor-On signal is sent from the Computer. If more
than one Mini Disks are connected, the Motor-On signal will turn them
all on and off simultaneously, even if only one of them is to be
accessed by the Computer. This signal is sent about a second before
the Computer accesses the disk, to allow the drives to reach operating
speed.

While the Computer is accessing one of the Mini Disks, the red light
(LED) on the front of that Mini Disk will remain lit.

Caution: Do not open a drive latch to insert or remove a diskette
while the drive motors are running (i.e., while one of the LEDS
is lit).

How a Diskette Works

A diskette is simply a circular plastic sheet, one side of which is
coated with a highly polished layer of ferromagnetic material. Similar
to a 45 RPM record, the diskette has a large spindle hole to
accommodate the drive hub, and a small hole which indexes the
diskette as it rotates.

2-5

Mini Disk Operation

e e

A blank diskette (either brand-new or magnetically erased) contains
no information. TRSDOS has a special utility program (called
FORMAT) which takes a blank diskette and organizes it into
concentric “tracks” and subtracks called ‘“‘sectors”. See Figure 6.
These divisions are like the numbered pages in a book. (FORMAT
also places a small amount of system and bookkeeping information
onto each diskette. For more information, see Extended Ultilities,
FORMAT.)

TRACK 1 SECTOR B
DATA 256 BYTES SECTOR NUMBERS

TRACK/SECTOR ID FOR
TRACK 1, SECTOR 8

B —
DIRECTION OF ROTATION

Figure 6. Track/sector organization on a formatted diskette.

Each diskette is permanently sealed inside its jacket to prevent
bending, creasing, scratching or contamination of the diskette
surface. When the diskette is loaded into the drive, a hub assembly
grips the diskette; when the drive motor is on, the diskette

rotates inside its jacket. The specially treated jacket lining cleans
the diskette as it rotates.

Notice that the TRSDOS diskette comes with a piece of tape across
the top (above the label). This tape covers the diskette’s write
protect notch. With the notch covered, the diskette is physically
protected from being written to. (A *““write operation™ is any
alteration of the data stored on the diskette. In contrast, a “‘read”
does not alter the information — merely accesses it.)

2-6

Mini Disk Operation

Remove the tape from the diskette if you intend to write to it; and
place a tape over the notch on any diskette you don’t want to
accidentally write to.

See Figure 7.

LABEL WRITE PROTECT7 WRITE PROTECT TAB
| -
@0\.___ @0
'—‘-I'__' | SECTOR HOLE

JACKET

READ/WRITE NOTCH

Figure 7. A diskette; a write-protected diskette; a diskette in
protective storage envelope.

Inserting a Diskette

1. Be sure the Mini Disk drive is stopped when you insert or
remove a diskette.

2. Open the front of the Mini Disk drive. Gently insert the diskette
into the vertical slot, with the write protect notch up and the
diskette label to the right (Figure 8). Be sure not to close the
latch until the diskette is inserted all the way and seated
properly, or you may damage it.

3. Close the Mini Disk latch. This causes the spindle-hub assembly
to grip the diskette. If the door doesn’t close easily, don’t
force it. Re-insert the diskette and try again.

Figure 8. Inserting a diskette.

2-7

Mini Disk Operation

Power-Up Sequence

You should always power up the peripherals (disk drives, printer,
Expansion Interface, etc.) first, and the TRS-80 CPU/keyboard last.
Also note that turning the peripherals on and off while the Computer
is on may confuse the system and cause abnormal operation. Work
done on a currently open file may be lost.

The power switch for each Mini Disk is on the rear of the unit. Power
is “on” when the toggle switch is in the up position, and *‘off”” when
the switch is down.

Turn on the Expansion Interface.

Turn on the Mini Disk drives: first the terminal drive, 26-1160,
then the other drives, if any.

3. When you turn on the TRS-80 CPU/keyboard, the Computer
will instantly attempt to load TRSDOS from Drive 0. So before
turning on the CPU, carefully insert the TRSDOS diskette into
drive 0 as explained above under “‘Inserting a Diskette”. You
may also want to insert formatted diskettes into the other drives
now; however, these may be inserted any time the drives are
stopped.

1.
Z

Another approach would be to plug all devices into an adequate
power strip and tum them all on with a single switch.

Care of Diskettes

Diskettes are precision recording media. Handle them very carefully
to get maximum life from each diskette. In general, follow the special

handling precautions used with both tape cassettes and high fidelity
records.

1. Keep the diskette in its storage envelope whenever it is not in

one of the drives. Don’t leave the diskettes in the drives

needlessly, for example, when the system is turned off.

Keep diskettes away from magnetic fields (transformers, AC

motors, magnets, etc.). Strong magnetic fields will destroy

information on the diskettes.

3. Handle the diskette by the jacket only — don’t touch any of the
exposed surfaces. Don’t try to wipe or clean the diskette surface;
you might scratch it and destroy data.

4. Keep the diskette away from heat and direct sunlight. See the
“Specifications” section below for storage temperature range.

[

Mini Disk Operation

3. Avoid contamination of the diskette with cigarette ashes, dust
or other particles.

6. Do not write directly on the diskette jacket with a hard-point
device such as a ball point pen or lead pencil, as this could
damage the recording surface. Use a felt tip pen only.

7. Before inserting a diskette into the Mini Disk drive, be sure the
motor is off (no LEDs lit and no motor sound).

8. Store diskettes in a vertical file folder or on a shelf where they
are protected from pressure to their sides (just as phono
records are stored).

If you have problems. . .

Frequent occurrences of disk I/O errors during disk accesses

may indicate a worn diskette or some problem with the Mini Disk
drive or other hardware. Try to isolate the problem by swapping
drives and diskettes as available.

If you have a repeated problem with a particular diskette, try copying
the accessible files onto another diskette. Then erase the faulty
diskette with a bulk eraser (Radio Shack Catalog Number 44-210)
and attempt to format it (see Extended Utilities, FORMAT).

During the format process, the diskette will be checked for flaws,
and any defective tracks will be locked out, leaving you with an
otherwise usable diskette.

If the Mini Disk drive seems to be at fault (errors during access to
several diskettes), bring it in to your local Radio Shack store for
servicing.

29

Mini Disk Operation

Specifications — Drives and Diskettes

Storage capacity (bytes available to user)

ormatted diskette
TRSDOS diskette

Diskette Organization
Tracks per diskette

Bytes per track

Sectors per track

Bytes per sector
Data transfer rate

Average access time
Drive motor start time

Required media

Diskette life*

Data storage life
on diskettes

Diskette storage temperature
Size
Drive unit

Diskettes (jacket size)

Power requirements

83,060
58,880

35

2560
10
256

12.5K bytes/second

750 mS
1 second

Radio Shack Flexible Diskettes,
Catalog Number 26-305, or

26-0405 (pkg of 3)

2.5 x 108 passes/track (110 hrs)
5 years estimated actual use

20 years

50-125 deg.F (12-52 deg.C)

6-3/8x 3-1/2x 13-1/4"
(16.2 x 8.4 x 33.7 cm) HWD
5-1/4 x 5-1/4 x 1/32”
(13.3x 13.3 x0.08 cm) HWD

120 VAC, 60 Hz, 35 Watts (28 VA)

* Typically, diskette life will be limited by improper handling.
Follow handling recommendations listed above for maximum

diskette life.

2-10

Schematic Diagrams
Control Logic

+12ZVA

/W |\
xXS4o0|

/W cT.
X340\

_/W 2
XS A0\

+5V

S
&

FF_FS_M»
Q
4B

2B
B

READ BENABLE
vs 401

+
0
v <

N BOAAGE S
P

+ WRI\TE Pﬁa\'.——g’o

+OUTPUT ENABLE
xsdll TP 4 c:a
r32 72 I
[=/=]'4 i
3 4 e =
-\-SV—'VV\'-o—c{?/\ .57_5
RSl b
- INDEX [sECTOR G2 vy
RESISTOR ARRAY
VALUE m‘bn'[\cu UNUSED
¢ SBOMN| RPZ & B
e - +i2v @gofn| RrRPI
+1z2v =N 100 SO0 RPS
_Wi-?"‘l%—‘ +12VA T3 Rea
+{ cz8 c
4.7 2,9
Tlo‘fa TO-‘
+2V =TN £
4,5 6, Tree [Pos.[owiseo PEMIBERNETG] TYPE | PowuwiseD
auD 8,4 74 Ps 1400 3E 41| =] 124528 | 2
1402 3B 14 [=1 caznin | 4aa
el THRUAL
GND (?Wto 7aLsia 2E 4] 7 | — | wew9za | 24
+5V RTM _@LB 1407 2,40 14117 | — 1486 4c [4c2
cz1 |cia e L 7433 | 20 4|7 | = | secz |48
=4.7 ::Zgﬁ&f 1438 2F 1a |1 =learzzzze | 2A
+ 1o 252
4 . 14714 28,00 DIa|14| 1 | — [zaTZ905 | \C
rev —g +3V 1415 | 2D e |8 | — |[\soa T 7
2.1 T4LS221 aC o | 8 | - |MPa®12s | 4F

+ PuLL UP 2
Kedo|

+ PULL UP 1
XS40\

— READ DATA

+ WRI\TE PROT.
Xsao)
- WRITE PROTECT

- IMDEY/SECTOR

REF DES!GEMLT\DM
NOT USED

+5Y 2 VY H— tsv
{ =4
S
oK
o
opf
%’:’-]TS 14 TP
a
o) 48 2 30
D ako n Da %
o :
£
lm 26 plt 284
4
25 P Ex¢
+5V—NW—JW—— INDEX/SECTOR LED
RS
EY)
JSED
REF DESIGMATIO
Rerayaus™
c€20,23,24
TNPE | PO Jouost | BNt s
54538 | B¢ Bl 4| —
MBI | AA -+]18
JES9ZA | 3A — |5 | e
1486 4c |4c2 4|7
9602 4B |8 | —
272222 | 2A == |
AT2905 | \C -1=1-
50 L \E (3 - i
Paa12s | 4AF = =il e

LOTESt UNLESS OTHERWISE SPECIFIED,

2.
2.

4.
5,

@,

a

O

ALL CAPMCITORS ARE N MICRO-
FARADS, 50V, +BO, -20%e .

ALL DIODES ARG (M4148.

ALL (NDUCTORS ARE W MiCRO-
HEMRIES, (0%,

ALL RESISTORS ARE 1IN QHMS,
Taw, 2°/e.

0O—0 |UDICATES SUUNT SELECTABLE
OPTION.

¥ IMDICATES .‘\,-@—- INDICATES M7,

<3 \NDICATES 33, T2~ INDICATES J4.
CONMPOMENT NOT INSTALLED.

PIN 4 OF ID 1S GROUND.

R\3 vALUER MAY BE SOK.

2-12

L -
Read/Write Logic y J
i tizhe i*a)
13
< $ % e & < P13
19] 1§z °
NIEHAT) 2
AAA-
RI1
z}?’;‘z
1
\& 1%/ 4 y
—MoToR ol ¥
+PULL UP 2 (3 3
e rP3
ZE EZI_‘,GZ 2 ”
~WRITE DATA —x22 BTS2 uz
1°Ia
+5Y
|
é é¢
Sk
-WRITE GATY L. g \o > 4
+WRITE PrOT. 2420
xXsa00 o 2 . 2c . 0
= T %
omie eeer = Bty
w 3
u
=S
- DRIWE- SELECT 4 'L 2 o-0—42 -
DS2
IF
- DRI\VE SELECT 3 *4 4l o1
™3 12 a3
‘ 1138
12
TPI2 1 !
'3335)
20 e 8 %fa?-a 2l
-STEP % 9% P L =
\
DIRECTION —pi® o)
1 [1O
RZ2S R27 z&e
16K - a7k "
a2 AAN—F cil —AW—+5
1.0 = ol
0%t e %], | a o
R 9)38 0"
2le GA_I—leC.Qs_] !
+ PuLL uP | o Pex < B P P R
xXS400 . ‘ ca 200
— L 750pf >~—
3 = 1" =00V B
2% 1
+5v =
h
9
& 2 2rzo Lez9 7 Ol
$% 1 ?
§ RPS 4 ~—
- - Z 3 4
—TRBCK ZERO _WF el 8 EY, 5i3e>a
MO
+ TRACK. ZERO J@,"“ =
M. C. §
-
2-13 “+ 5\

® K‘y— —MTR ©on
CRG \
- — - R/W
! R\QK
—AAA— 2 s 20 XS400
R
z;f;‘w" E =
1
1% & A2
\c CcRS
z AN AN 24 o SN rR/wW 2
RIG ol BF2 = coa
wr A \/8W £ xS400
IIBM}‘ 1o
i 2o
—AANV
+12v 9
e e ERASE
4
7 ¢l
.03? r
Qz 0 *20°e
Q - 4
212222 & T P~ R/W CT.
xsd4oc0
ZW—\,/ = ACTWITY LED
2 1% 2P5 &
sV J —MN—L—-——W— AcTIVITY LED
+12V
> |
: CRIG
*maoos N
] + G/~ — HEAD LOAD
+ READ EMABLE:
X400
=) + OUTPUT ENABLE
W) 232 45V Teeme
P l_ i L] +\2V
R38
IS Jvs 70—y
i
4D
| 10 | N2 E3 ! ki
4 =
g€ Ly 2 CRI4 ' e
9
2ly St q, e
8 A L__@._M
9|o 10 e QBIA T—H—« ¢c
3|= 4-BIT, [E)
Korea &
pEe 1 Sy ee
z]|® 30 Qp
5 - “—_'S
R) cRI1.|IN40O3
- J:: JI <R3 criz cril of!
o +8v | > l—@_p PA
@7P8
2e | CRI®
S | g =) IN4OD 26, _TRACK ZERO
C\e
[~} lsoo £ -
T Eeov -
& = 5°|o

LAAA-
RP4

2-14

Mini Disk Operation

Power Supply

Q2 |
MJE 30557 I
%9 I
|
B lzllc 23cP l :
2 1723C 1 0 '
R3 L4
2 o3ssew | =]
s |
7 T @ ﬂ 12V
/2 rRa | !
c3 10K 22K |
120 VAC :Dj R oor | HE
60 HZ z ltR7 cs |
i2v | {1k gﬁo |
ADJ I
t :RS |
- EETS
-]': 12 |12V RETURN
|| 7sos i
340T-05 1 |
L 3 —o—a [+ov
| |
1
4—3 | 5VRETURN
______________________________ Jd
N(!‘I’:i
UNLESS OTHERWISE SPECIFIED: c—! 14 1-NC
T T2 131-FRI IMP
| ALL RESISTORS ARE 1/4 WATT, 5%, C(EJURRR'ZE".# S‘EIP?S'E 3 12k £aco
RESISTOR VALUES IN OMMS, K=1000, Pt Fr
2 CAPACITOR VALUES IN MICROFARADS NON-INV INPUT g 10}-vouT
AND WORKING VOLTAGE v REF =6 9+-vz
3. — = INDICATES CLOCKWISE ROTATION !

o[e

MCIT23CP TOP VIEW

Mini Disk Operation

Making a TRSDOS BACKUP

Before you do anything else with your TRSDOS diskette, follow these
instructions for making a “safe copy’” of your system software. That
way, if anything should happen to your original, you won’t be “out
of business” while you wait to get another one.

Connect the Mini Disk system and power it up as described in the
Mini Disk Operation chapter. Be sure your TRSDOS diskette is in
Drive O when you turn on the CPU. (And just for safety, leave the
write protect tape on the TRSDOS diskette until you’ve duplicated
it.)

If you have more than one drives connected, place a blank diskette
in drive 1. If not, have the blank diskette handy — BACKUP will tell
you when to insert it into drive 0. Do not place a write protect tape
on the blank diskette.

After you power on the CPU, the display will read

TRSDOS - DISK OPERATING SYSTEM - VER 2.1

bOS RERDY

Type:
The system will then display:
TRSDOS DISK BACKUP UTILITY VER 2.1

If you have only 1 drive connected, type:

SOURCE DRIVE NUMEER 27 @
DESTINATION DRIVE NUMBER 2 @ ENHER

If you have two or more drives, type:

SOURCE DRIVE NUMBER 7 @ ENMED
DESTINATION DRIVE NUMBER 2 4 YLD

Now type in the date in MM/DD/YY form. For example, if it’s
August 3, 1978, type:

BACKUP DATE <MM/DDAYYD 7

3

TRSDOS will then start the BACKUP procedure. First it will format
the blank diskette, locking out any defective tracks; then it will
duplicate the contents of the TRSDOS diskette onto it.

Mini Disk Operation
b ________ = = =

If you are using only one drive, BACKUP will tell you when to insert
the destination (blank) diskette, and when to re-insert the source

(TRSDOS) diskette. During the BACKUP process, you will have to
swap the two diskettes several times.

When the process is completed, the message:

BACKUF COMPLETE - PRESS ENTER TO CONTINUE
will be displayed.
If TRSDOS instead displays the message:

BACKUFP REJECTED DUE TO <... 2>

then erase the diskette with a bulk eraser (Radio Shack Catalog
Number 44-210) and repeat the BACKUP procedure. If it still won’t
work, you may need to try using another blank diskette.

IMPORTANT NOTICE

The BACKUP utility is provided solely for your personal use in
maintaining safe copies of your TRSDOS and data diskettes.
BACKUP automatically places copyrighted TRSDOS software

onto each destination disk. TRSDOS users may BACKUP the system
software solely for personal use.

See the Copyright Notice at the beginning of this Manual for more
details.

TRSDOS
An Overview

noownx-

Contents of This Section

INrOdUCHIONoiies i vevmeemr s s wisssasimsins 2
EIErinG A GO . cowvesmenmsmmsmasmy e smes womms 5
File Specification 6

Section 3 - Page 1

Scanned by Ira Goldklang - www.trs-80.com

TRSDOS Overview

Introduction

TRSDOS, like the entire TRS-80 Microcomputer System, is designed
to satisfy a broad range of users, including:

® The novice to computers, who wants to start simply and learn
the details gradually

® The experienced programmer, who expects to write complex
programs, and may want to use some of the system routines
on a machine language level, to accomplish a variety of
sophisticated, customized applications

e The pure “user”, who is only interested in using programs, not
writing them (for example, a clerk using an inventory program
on the office TRS-80).

What Is an Operating System?

By the time you finish this book, you’ll have a pretty good idea . . .
But for the time being, here’s an overview.

An operating system is a master program that allows a complex
computer system, including various Input/Output (I/O) devices,
storage devices and programs, to interact efficiently and with
apparent simplicity. The operating system makes sure everything
that has to be done, gets done — and you don’t even have to know

My

what it is that **has to get done™!

Here’s a rather arbitrary breakdown of what an operating system
does (see Glossary for unfamiliar terms):

® Interfaces the central processing unit (CPU) with the various
input/output and storage devices

. Accepts and interprets operator commands

. “Shepherds’’ your programs (and system utilities you request)
in and out of the execution sequence, by allocating CPU time,
I/O channels, storage and other system resources

. Handles interrupts, and oversees the execution of both
foreground and background tasks

o Provides fundamental routines which would otherwise have to
be included in every program; this saves memory and pro-
gramming time

32

TRSDOS Overview

You don’t always have to be aware of the operating system to use it.
For example, when you’re using DISK BASIC, you don’t see
TRSDOS at all. But the system is still there, executing a program
called BASIC; BASIC, in turn, executes your own programs and
commands.

At other times, the operating system may be quite visible to you,
allowing you to enter system commands directly. This is the case
with TRSDOS and its “DOS READY” mode.

What Is TRSDOS?

The TRS-80 Disk Operating System (TRSDOS) is a comprehensive
set of system routines and file management utilities. Much of its
complexity (and power) relates to the fact that it is disk-based.

The system is loaded from diskette, and uses diskettes to store
internal bookkeeping information as well as data and programs you
create. TRSDOS uses completely dynamic disk space allocation,

so you can open and manipulate files freely without worrying where
they are physically located on the diskette. When a file fills the
space currently allocated to it, TRSDOS automatically finds and
acquires more space to accommodate additional data (assuming
space is available on the diskette).

(All information on a diskette — programs, data, and TRSDOS
itself — exists in the form of files. For more information on files,
see the Glossary, Files Entry, and the Technical Information chapter.)

In addition to system routines which perform the functions
described above under ““What is an Operating System?”, TRSDOS
includes several file management utilities to let you manipulate and
modify existing files on the diskette: copy, append, rename, change
the protection status, etc.

33

TRSDOS Overview
[e e o o

How TRSDOS uses RAM

TRSDOS consists of:

an executive program file

auxiliary system-routine files

a library-command file

extended utility files (BACKUP and FORMAT)
and the DISK BASIC file.

The executive program is loaded into RAM on power-up, and remains
there at all times while TRSDOS is running. For this reason it is
called the “‘resident” TRSDOS program. It includes certain system
routines, tables, pointers, and Input/OQutput drivers.

The auxiliary system files contain routines and commands which
are loaded as needed to execute your commands and programs.
These routines load into an “overlay” area of memory. When
TRSDOS has executed the routine, another one may be loaded in
the same area, or “‘overlayed”. The use of overlays means that
execution of system routines will not affect your memory area
(addresses above 51FF hex).

The library command file contains the routines for executing most
of the operator commands. These routines load into memory
addresses from 5200 to 6FFF. Therefore your machine language
programs should generally be located above 6FFF. That way they
won'’t be affected by execution of the library commands.

The TRSDOS extended utility programs are loaded when you type in
their file names, BACKUP and FORMAT. These programs can use
all available memory — even the resident TRSDOS program is wiped
out when they are loaded.

DISK BASIC is a set of enhancements to LEVEL II BASIC. When
you type in its file name, BASIC, it will load into memory beginning
at 5200, and begin execution, (There are two “versions” of BASIC,
named BASIC and BASIC R. BASIC R has a renumber command —
that’s the only difference.

TRSDOS Overview

Entering a Command

Whenever the prompt,
DOS READY

is displayed, you may enter an operator command. In its simplest
form, an operator command is just a single word — a system or library
command, the name of an extended utility program, or the name of a
user command program. All these categories will be detailed later.

As an example,

DIR

tells TRSDOS to display the user file directory for drive 0.

In general, operator commands will require more than one word;
for example, to kill (delete) a certain file, you have to specify the
file name.

KL ¥z NI

tells TRSDOS to find the file named XYZ, eliminate it from the
directory of the diskette which contains it, and release the space
occupied by that file.

In general, an operator command consists of a command followed by
one or more file specifications, followed by special parameters:

command [bfilespec] [W(param)] [BTO] [Wfilespec] [B(param)]

where filespec is a valid TRSDOS file specification (more below)
param is a parameter which details how the command affects the
specified file(s).

If this command format seems complex, don’t worry; that’s because
it’s so generalized. The actual commands can be quite simple, as
you’ll see from the examples given with each command.

Whenever you finish typing in a command, press (3ARR3A .
TRSDOS will then process the command as follows:

1) Check to see if it's a command; if so, execute it immediately
. . . otherwise

2) Check to see if it’s the name of a system utility program; if so,
execute it via the extended utility package . . . otherwise

3) Examine the diskette directory on each drive to see if the
command is listed as a user command file; if so, load and
execute the file.

35

TRSDOS Overview

File Specification

A file specification (filespec) is the way you reference a particular file,
whether you’re operating under TRSDOS, DISK BASIC, or any other
command program (e.g., TAPEDISK).

Disk file specifications have the following format:

name|/fext] [.pw] [:d]
where

name is the file name, consisting of from 1 to 8 alphanumeric
characters, the first of which must be alphabetic

ext is an optional extension of the name, consisting of from
1 to 3 alphanumeric characters, the first of which must be
alphabetic. The extension, if used, must be preceded by a
slash symbol.

pw is an optional password, consisting of from | to 8 alpha-
numeric characters, the first of which must be alphabetic. The
password, if used, must be preceded by a period symbol.

:d is an optional drive specification, with d equal to 0,1,2 or 3,
depending on which drive you wish to specify. The drive
specification, if used, must be preceded by a colon.

Do not embed blanks in a file specification. If you do, TRSDOS
will terminate the filespec at the first blank; if the truncated filespec
is valid, you won’t receive an error message.

Valid file names:

A INVNTORY DATA11

GAMES/BAS SORTER/VR1 SORTER/VR2
PAYROLL/BAS.SESAME SECRETSMYNAME POETRY/TXT:1
DRIVECHK:1 DRIVECHK:2 AUG3078/DAT.JQD
AUGI578 TAXES/TXT.TEAPARTY:1 CHKWRITR/BAS.VERSION2

To take a completely “*filled out™ filespec,
TAXES/TXT.TEAPARTY:1 refers to a file named TAXES, with
an extender TXT, and a password TEAPARTY. This file is
referenced to drive 1. If you are creating a file under that filespec,
it will be placed on drive 1. If you are reading or writing to the
file specified, TRSDOS will reference drive 1 for the file.

36

TRSDOS Overview

What makes a particular filespec unique?

The name, extension and drivespec all figure into the uniqueness
of a particular filespec. The password does not.

For example, the following filespecs refer to distinct files:

A A/BAS A/CMD
DRIVECHK:0 DRIVECHK:1 DRIVECHK:2 DRIVECHK:3

However, the following filespecs cannot be used to reference
distinct files:

RECEIPTS RECEIPTS.AUG3078 RECEIPTS.AUG3178

(There are cases where two different passwords are used to access
the same file; see TRSDOS Library Commands, ATTRIB.)

More on Extensions

The particular extension you use can be purely arbitrary and
personalized. Used this way, extensions give you an extra three
characters to work with in creating a suitable file name.

Examples:

PAYROLL/AUG PAYROLL/SEP PAYROLL/OCT

However, extensions become more meaningful when they are used
as type specifiers, using some convention. Here’s a recommended
set of extensions:

/BAS BASIC program file stored in compressed format

/TXT ASCII text: BASIC program saved in ASCII form, or
source file, etc.

/CMD machine language command file
/CIM core (RAM) image file, not necessarily executable

/REL relocatable machine language program file

/SYS system program — files which are part of TRSDOS. Don’t
use for your files.

/OVn overlay number n

/DVR I/O driver module

37

TRSDOS Overview

One advantage of this usage is that anyone looking at a directory
listing of a diskette will know what kinds of programs he’s
looking at.

Another advantage is that TRSDOS is equipped to recognize
certain extensions. For example, if a file has the extension /CMD,
then TRSDOS will load and attempt to execute that file when

you type:

filename [IRBA;

omitting the extension /CMD.
That’s why you can execute the file BASIC/CMD by typing

sasic ENED

Similarly, your own programs can be written to recognize
extensions.

More on Drive Specifications

If you give a drive specification, TRSDOS will use the specified
drive in executing the command. If you omit a drivespec,
TRSDOS will search through the directories of all drives in use,
starting with drive O; the first drive with the correct name/
extension will be used. However, if the command requires a file
creation, TRSDOS will skip over to the first non write-protected
diskette.

For example, suppose four files named DRIVECHK are contained
on drives O through 3. Then every reference to DRIVECHK (no
drivespec) would go to drive 0. The filespecs DRIVECHK:O0,
DRIVECHK:1, DRIVECHK:2, DRIVECHK:3, would allow each
of the four files to be accessed.

More on Passwords

The password is assigned when the file is created, and may be
changed via the ATTRIB or PROT commands. Files with
passwords can only be accessed by reference to the password, or
to the diskette’s Master Password. So if you assign a password to
a file, don’t forget it!

It’s important to realize that every file has a password, even if you

do not specify it explicitly when the file is created. In such cases,
a field of 8 blanks becomes the password.

38

TRSDOS Overview

For example, if SAMPLE (a file with no explicit password) exists
and you attempt to create a new file, SAMPLE.WATERBOY,
TRSDOS will give you a FILE ACCESS DENIED message, since
in effect you’re trying to access an existing file with the wrong
password. The correct password is a string of 8 blanks — which
you can omit from the file specification, since 8-blanks is the
default password.

39

TRSDOS
Commands

NOONI -

BASICR

Contents of This Section

............ 2 DUMP .. oo v s
............ 2 L T
............ 3 FREE ..o coss
............ 6 LB.............
............ 7 LIST
............ 7 LOADicu0a
............ 8 PRINT..........
............ 9 PROIT s coas mann
............ 9 RENAME
........... 10 TME
........... 17 TRACE ... 2 v
........... 17 VERIFY
Section 4 - Page 1

Scanned by Ira Goldklang -www.trs-80.com

TRSDOS Commands

APPEND (Merges 2 files)

APPEND file — 1 TO file — 2

where file—1 and file—2 are TRSDOS file
specifications

This command lets you append (add) one file onto the end of
another. This is primarily useful with data files.

APPEND copies the contents of file—1 onto the end of file—2.
File—1 is unaffected, while file—2 is extended to include the contents
of file—1.

For example, suppose you have two mailing lists stored in text
files FTWORTH/TXT and NTEXAS/TXT. You can copy the FTWORTH
file onto the end of the NTEXAS file with the command:

APPEND FTWORTH/TXT TO NTEXAS/TXT
NTEXAS will now include FTWORTH/TXT at the end, while
FTWORTH/TXT will be unchanged.

NOTE: If you want to APPEND BASIC programs, both files must

be stored in ASCII format (SAVEd with the A option). Also, line-
numbers in file—1 must be higher than those in file—2.

AUTO (automatic key-in on power-up)

AUTO [Bdos-command)

where dos-command is a filespec for an operator command
or an executable command file.

Note: To use AUTO, you must remove the write-protect tab from the
system diskette.

The AUTO command lets you modify the power-up sequence, by
specifying a command to be executed immediately after power-up.

42

TRSDOS Commands

Typing:
AUTO dos-command

causes TRSDOS to write dos-command as an ‘‘automatic key-in"
on the drive O diskette, replacing any previous automatic key-ins.
From that point on, every time you power up using that TRSDOS
diskette, dos-command will be keyed in automatically whenever
TRSDOS is initialized. An automatic key-in takes the place of
keyboard input.

To restore the power-up sequence to normal, type:

AUTO

This will eliminate any automatic key-ins.

Examples:

AUTO CLOCK on subsequent power-ups, the display clock
command will automatically load and execute.

AUTO BASIC on subsequent power-ups, TRSDOS will load
DISK BASIC and begin the initialization dialog.

NOTE: You can override any automatic key-in by holding down the
key during power-up. This may be your only way of
regaining control of the system, for example, if dos-command is not
a working command program.

ATTRIB (set protection attributes)

ATTRIBWfilespech(param| param . ..])

where param can be any of the following:

param meaning
I make file Invisible to normal Directory command
ACC=pswl assign pswl as the new access password
UPD=psw2 assign psw2 as the new update password
PROT=level assign level as the new access protection level:

(KILL, RENAME, WRITE, READ, EXEC)

The filespec must exist on one of the connected drives.

This command lets you alter the protection status of a file, by
changing passwords and/or the degree of access granted by a
password. (See TRSDOS Overview, “‘File Specifications” section.)

43

TRSDOS Commands

Specifying the I parameter gives the file the invisible attribute. To
display Invisible files in the Directory, you have to specify the

I parameter in the DIR command. There is no way to remove the
I attribute, short of copying the file to a new file which does not
have the I attribute.

Example:

-

DOS READY
DIR i1 ENED

FILE DIRECTORY --- DRIVE 1 MANURL -- @3/81/78

MENU/TXT TEST/BRS P

DOS READY
DIR '

FILE DIRECTORY -—— DRIVE 1 MANUAL -- 89/81/78

TEST/BRS P VIDSCAN/CMD 1 MENUATKT

DOS READY

All files are protected with two passwords, an access and an
update password. Access and update passwords may be identical,
and they may consist of all blanks. Use of the update password
grants total privilege to a file — you can kill, rename, write, etc.
Use of the access password, on the other hand, grants a limited
privilege, as specified by a PROT parameter in the ATTRIB
command.

4-4

TRSDOS Commands

The protection levels form a hierarchy, and each level implies
access to all lower levels.

level privilege

KILL.- total privilege

RENAME rename, write, read, execute
WRITE write, read, execute

READ read, execute

EXEC execute only

When you create a file, the password you specify becomes both
the access and the update password. (If you don’t specify a
password, a string of 8 blanks is assigned as a default password
for both access and update.)

Once you have created the file, you can use ATTRIB to assign
different values to the access and update passwords. Having
two different passwords can be very useful in business applications.

For example, suppose you have a data file, PAYROLL, and you
want an employee to use the file in preparing paychecks. Assume
the file was created with default (blank) passwords.

Then:

ATTRIB PAYROLL (ACC=EMPLOYEE, UPD=MANAGER, PROT=RERD)

would allow the EMPLOYEE to read the file, while only
MANAGER could alter it.

To delete a password (set it to blanks), omit the password after
the equals sign in the password specification. For example,

ATTRIB PAYROLL. MANRGER (RCC=)

sets the access password to blanks, and leaves the update password
unchanged.

Note: To access a file from DISK BASIC requires a privilege of
READ or higher.

4.5

TRSDOS Commands

BASIC (load and run BASIC)

BASIC p*

This command loads DISK BASIC into your system. You enter this
command every time you want to use DISK BASIC by typing:

BEASIC

Sometimes, once you are in DISK BASIC, it is necessary to exit from
it in the middle of developing or running programs. This might hap-
pen if you have to use the reset switch, or if you want to use
TRSDOS to find out what files you have saved.

In these cases, you will want to use the BASIC * command to return
to DISK BASIC. By typing in an asterisk after the command, you
will be able to return to DISK BASIC without losing any of the
programs and data you had in memory,

For example, suppose you are using a BASIC program and the system
hangs up for some reason, requiring you to press Reset. Then under
TRSDOS, simply type

Note the mandatory single space
ENTER .
BASIC * before the asterisk *.

and you will return to the READY mode in BASIC. Your program
should be intact.

For another example, suppose you are typing in a BASIC program
and you want to return to TRSDOS to look at the diskette directory.

Then type:
cMD "
DIR

After examining the directory, you can return to BASIC and
recover your program by typing:

RASIC *

BASIC will skip the FILES? and MEMORY SIZE? questions, and
return with the prompt:

READY
>

You can now LIST the program to be sure it was recovered.

Note: Do not use the BASIC * command when you have no
BASIC program in memory. This might make the System ‘“hang up”,
requiring a Reset or Power-Off, Power-On,

46

TRSDOS Commands

BASIC2 (jump to LEVEL I BASIC)

‘ BASIC2 T

This command has no arguments or parameters. It simply transfers
control to LEVEL II BASIC. Once it has been executed, TRSDOS
is no longer resident in RAM. Your TRS-80 will then function as

a LEVEL Il machine.

You may want to do this to gain memory for programs which
don’t require disk capabilities. Another possible application
would be to LOAD a machine language routine from disk into
high memory, and then jump to LEVEL Il BASIC via BASIC2,

so you can access the routine from LEVEL II, via a USR function.

Example:

8 R

MEMORY S1ze> ENED
RADIO SHACK LEVEL 11 BRSIC
READY

>

To re-load TRSDOS, press the Reset button or type
SYSTEM

L8 JENTER]

BASICR (load and run Enhanced BASIC)

BASICR §*

Your system has two forms of DISK BASIC — BASIC and BASICR.
The only difference between them is that BASICR has a renumber
command, NAME.

You load and run BASICR the same way as BASIC. Type:
BASICR

4.7

TRSDOS Commands

Typing in BASICR * lets you return to your BASICR programs
from TRSDOS in the same manner that BASIC * lets you return
to your BASIC programs.

For details, see the BASIC command above, since these two com-
mands operate the same.

Note: To run Radio Shack applications programs, always use
BASIC, not BASICR.

CLOCK (display real-time clock)

CLOCK[W(param)]

where param=0N or OFF; if no param is specified,
ON is assumed.

Typing:

CLOCK

causes the internal real-time clock to be forcibly displayed on the
top line of the Video Display (PRINT positions 53-60). Any
characters present at those locations will be overwritten.

The clock display is updated once a second via a “foreground task”’.
In other words, as long as the interrupts are enabled, TRSDOS

will periodically interrupt whatever “background program” is
executing (DISK BASIC, TAPEDISK, etc.), and update the clock
display.

TRSDOS powers-up in a CLOCK OFF condition.

To stop the display-clock function, execute the command:
CLOCK (OFF)>

See TIME command for information on the real-time clock.

48

TRSDOS Commands

COPY (make a duplicate file)

COPYWfilespecl WTOWfilespec2

Creates a duplicate of filespecl under the new name filespec2. If
filespec? already exists, its previous contents are lost. The first
file (filespecl) is unchanged by this command.

You must have at least two disk drives to copy a file from one
diskette to another.

Examples:

COPY PRGE7/TXT:@ TO PAGE?/TXT:1
duplicates PAGE7/TXT on drive 0 onto drive 1, using the same
name/extension.

COPY OLDFILE/BARS. PD@ TO DERDFILE
duplicates OLDFILE under the name DEADFILE. Note that
OLDFILE is protected by a password, while DEADFILE is not.
DEADFILE will be created on the first non write-protected
drive in the sequence 0-3.

DATE (set date)

DATEpmm/dd/yy

where mm is a 2-digit month specification, mm=01 to 12
dd is a 2-digit day specification, dd=01 to 31
yy is a 2-digit year specification, yy=00 to 99

For example, if it’s August 3, 1978, type:
DATE 88/83/78

This command resets the real-time date. At power-on, the date
is set to 00/00/00. The date is updated each time the clock
cycles through a 24-hour period. The real-time clock calendar
includes the logic to account for 28, 29, 30 and 31-day months.

49

TRSDOS Commands

DEBUG (real-time debugging program)

DEBUG| b(param)]
where param = ON or OFF, and ON is the default.

DEBUG is a real-time debugging package for use with machine
language programs, including both foreground tasks and back-
ground programs. (See Glossary.) DEBUG lets you examine and
alter the contents of the Z-80 registers and RAM locations;
jump to specified addresses and begin execution with optional
breakpoints; step through programs one instruction (or one
CALL) at a time, and more.

All address and byte values in this DEBUG section are given in
hexadecimal form — which is the form required by DEBUG.

DEBUG loads into the overlay area; addresses above 51FF are
unaffected.

Type:

DEBUG
to enable the debugging facility. Normal TRSDOS command
interpretation continues; but the debug program is now set to
load and execute under any of the following conditions:

1. When the BREAK key is pressed.

2. After a program is loaded and before its first instruction
is executed.

3. Upon detection of a disk-related error.

Note: TRSDOS system routines and execute-only user routines
cannot be fully debugged: you can use DEBUG to examine/alter
register and RAM contents, but not to single-step, jump, etc., when
these protected programs are the “‘targets’” for DEBUG. Furthermore,
since DEBUG loads into the overlay area of RAM, you can’t use it
with other overlay programs and routines.

DEBUG offers two display formats:

register display with indirect RAM
plus any 64-byte “page” of RAM;
full screen, 256-byte page of RAM.

4-10

TRSDOS Commands

In the register display format, DEBUG displays all the Z-80 registers,
organized for interpretation either as two 8-bit registers or as 16-bit
register pairs. Since most programs use several sets of register pairs
as indirect pointers or indexing registers, 16 bytes of indirect data
are presented with each register pair. Each of the flag registers is
shown with an ASCII representation of its flag bits.

An additional 64 bytes of memory are displayed in four lines at the
bottom of the display.

Here’s a typical DEBUG display sequence. Note that the values in
your display will typically vary from these.

f_

e TJENTER
DOS READY

__1_1__-
=» @9 BA C2 €@ 89 7D 92 C2 6@ @9 27 41 CD D3
=> 1A 4D 45 4D 4F 52 59 28 52 43 5A 98 52 41 44
=> 91 61 58 1B @A 1A 08 18 @9 19 20 @B 78 Bl 26
SZ1HAPNC
54 54 CD FC 54 7E 22 18 EC @z @2 4E @2 32 EV
4D 4F 52 59 28 53 49 SA 45 @8 52 41 44 49 4F 20
F2 51 @6 10 CD 65 51 3A 5D 40 FE 41 28 13 CD F2
@1 E3 B2 00 00 06 4B 49 07 58 @4 21 IE 20 44 4F
FFIFAIAF C2 74 B6 C2 8@ 4@ C3 @@ 40 E1 ES C3 SF

o oun

52 @4 DD @3 15 48 15 40 18 43 3F 2F 4C 00 EX 65
2B 78 B1 20 FB C9 31 @@ @6 3R EC 37 ZC FE @2 D2
28 1@ FE 44 28 oC FE 3@ 28 F@ FE 2C 28 EC FE 2E
20 @3 2B 36 39 7B E6 18 28 @2 2B 26 24 7B E6 B4
P 2B 70 C9 32 D8 48 21 3@ 41 26 20 C3 FE @5 ES
DE @8 17 57 14 CD @1 12 @1 @@ @2 82 FR 57 1@

nmu nni

411

TRSDOS Commands

In this display, register B contains the hex value OA, and register C
contains 3E. Taking the BC register pair as a pointer, it points to
address 0A3E. Therefore, the contents of memory locations 0A3E
through 0A4D are shown to the right of the BC = 0A3E =>marker.
In this case, address OA3E contains 09, 0A3F contains BA, etc.

The flag registers F and F’ are handled differently. For these
registers, the hex contents of the flag register is displayed, along with
a bit-by-bit alphabetic code which makes it easier to interpret the

flag status. For example, bit 7 (leftmost bit) is the sign bit, so the
alphabetic code shows an S in that position whenever this bit is “set”.
Here’s a complete table of codes for all the flag bits:

bit status if set if not set
Sign

Zero

unused
Half-carry
unused
Parity/overflow
Negative

Carry

O =W h
|

In the above display, none of the F flag bits are set (discounting the
unused bits 5 and 3), and all of the F’ flag bits are set.

Notice the four additional lines below the PC register display. Each
line shows the contents of 16 bytes, starting at the address to the left
of the arrow; the four lines always show a total of 64 bytes of
contiguous memory i.e., locations with sequential addresses. The
starting point in this four-line display is either 0000 or the last
command you specified with the D command (more later.)

The blank area in the lower left of the Display is where commands
you enter will be displayed.

412

TRSDOS Commands

DEBUG Commands

Note that some commands are executed as soon as you press the
specified command key; other commands are executed only when
you hit <SPACE> or [A'REA:] . as indicated below.

Entry

Command Required

Operation Performed

A none

& none

Daaaa <SPACE>

Gaaaal ,bbbb| ccccl

H none
I none
Mlaaaa] <SPACE>

Shows the ASCII or graphics
character corresponding to each
value displayed. Shows a period
when the value is not displayable
as an ASCII or graphics character.

Single-steps next instruction, with
CALLS executed in full. (Next
instruction is defined by PC
register.) Target program cannot
be a system or execute-only file.

Sets memory display starting

address to aaaa. In full screen
mode, sets starting address so

aaaa is contained in display.

Place aaaa in PC register and
executes with optional
breakpoints at bbbb and ccec.

Displays all memory and register
values in hexadecimal form.

Single-steps next instruction
(defined by PC register). Target
program must not be read-
protected.

Sets the current modification
address to aaaa. The modification
dialog will then be displayed in
the lower left of the screen. If
aaaa is omitted, the last modifica-
tion address will be used for aaaa.
If aaaa is currently in the display,
its contents will be surrounded

by a pair of vertical bars.

413

TRSDOS Commands

Entry
Command Required Operation Performed

Rrpbdddd <SPACE> Loads register pair rp with the
value dddd.

rp may be any register pair: AF,
BC, AF’, BC', IX, 1Y, PC, etc.

S none Sets display to full screen
memory mode, showing 256
contiguous bytes. Press X to
return to register display format.

8] none Dynamic display update mode:
lets you observe the execution
of a foreground task., Hold down
any key for a couple of seconds
to exit this mode.

X none Sets display to register format;
also cancels any command you
are in the process of entering,
except R-command.

none Increments memory display by
one page (in register display
mode, page = 64 bytes; page =
256 bytes in full screen mode).

- none Decrements memory addresses
displayed by one page.

Note: You cannot use the backspace key (<) to delete mistakes
made while entering commands. Instead, just hit the X key to
cancel the command. Or, if you made the error while typing an
address or value, just type the correct address immediately after
the incorrect address. DEBUG will only look at the last four
digits entered.

For example,
D4748886 <SPACE>
tells DEBUG to display the page of memory containing address 4080.

414

TRSDOS Commands

More on the M-command (modify memory)

Any time you wish to alter the contents of a memory location, type
Maaaa and press the <SPACE>. This sets the memory modification
address to aaaa and puts a memory modification prompt in the lower
left corner of the Display. For example, typing

M7F88 <SPACE >

produces:

7F80 => |29/00 90 99 8@ 8¢ 92 B2 20 B3 B3I B3I B3 B3 B2 B3
7F@O_ 7F16 => B3 B2 B3 B3 B3 B3 B3 B2 BB B3 BB B3 BB B3 BB BB
26-_ 7F28 => FB BB BB BB BB FB FB BB @@ FB FB FB FB FB FB FB
7F38 => 8@ FB FF FB FF FB FF FF 88 FF FF FF FF FF FF FF_

-

Note the vertical bars around the value of 7F00; These will appear
wherever the modification address appears on the screen.

To modify the contents of 7F00, type the new, two-digit contents
and press < SPACE>. The display will then be updated, and
DEBUG will increment the modification address by one.

To leave an address contents unchanged, simply press <SPACE>
without first entering a new contents. This will increment the
modification address and leave the previous address unchanged.

To exit the modify memory mode, type X or 23343 .

If you simply type:
M <SPACE>

DEBUG will default to the last specified modification address, if any;
otherwise 0000 will be used.

Frequently, two values on the display will be highlighted by vertical
bars — one in the 64-byte memory display area, and another in the
indirect memory area associated with the register pairs.

This is because the contents of the modification address happens to
be displayed twice, one directly, one indirectly.

4-15

TRSDOS Commands

More on the G-command

To return to TRSDOS from DEBUG without re-initializing, type

L ENTER|

DEBUG will then be re-entered under any of the three conditions
noted above.

To disable DEBUG after using this exit, type
DEBUG (OFF)>

DIR

To begin execution at the address in the PC register (while you’re
in the DEBUG mode), type

ENTER|

To reinitialize TRSDOS, type

6aaa0

More on the U-command (update display)

In the Update mode, only foreground tasks are executed. So to see
anything happening, you need to look at registers or memory
locations used by a foreground task.

The real-time clock makes a good example.
Type:
D484 < SPACE>

to display the values 4040 through 4046. These addresses store the
time and date, as follows:

address contents

4040 25mS real-time scheduling counter
4041 seconds

4042 minutes

4043 hours

4044 year

4045 day

4046 month

Now hit U and you’ll see the values updated by the clock foreground
task.

4-16

TRSDOS Commands

Other applications for DEBUG

DEBUG can be accessed via DISK BASIC, to help you locate stack
pointers, table addresses, etc. See DISK BASIC.

DEBUG is also a handy way to create short object code programs,
which can then be DUMPed onto diskette.

To disable DEBUG

As long as DEBUG is in the overlay area, TRSDOS may enter the
debugging program unexpectedly, for example, upon an error. If
you don’t want this to happen, disable DEBUG by typing:

G4@2D (to return to TRSDOS)
DEBUG (OFF)

DIR

DEVICE

DEVICE

This command has no arguments or parameters. It simply lists all
currently defined I/O devices: KI=keyboard, DO=video display,
PR=line printer.

DEVICE

DIR (display directory)

Example:

DIR[b:d] [W(param|,param . ..])]

where :d = a drive specification, d=0,1,2 or 3, and
0 is the default
param = any of the following:

param meaning
S display all System and non-Invisible files
I display all Invisible and non-System files
A display disk space allocation for all files displayed

417

TRSDOS Commands

This command reads and displays the file directory of a specified or
assumed drive. If no parameters are specified, only non-Invisible user
files will be displayed.

Disk space allocation is indicated as follows: LRL (logical record
length), EOF (end of file, i.e., highest record number used), and
SIZE (measured in GRANules, where 1 granule = one-half track,
or 1.25K bytes).

Examples:

DIR

displays all user files on drive 0. A typical output for this command
might be:

-

FILE DIRECTORY --- DRIVE @ TRSDOS

-- 18/63/78

VIDSCANZ /CMD CLKRXESS/BRS GLOSSARY/BAS
LISTER/BRS TAPEDISKA/THMD KBFIX/CIM
DISKDUMP/BRS GLOSSACC/ERS YIDSCAN/CHD

DOS READY

DIR :1 (1,5)

displays all files, including System and Invisible files. A typical
output for this command might be:

r

FILE DIRECTORY --- DRIVE 1 MANUARL -- 89/7681/78

BOOT/SYS SIP DIR/SYS SIP TEST/BRS P
MENU/TXT

DOS RERDY

4-18

TRSDOS Commands
R L A RS s WL B L R - Dt S W N R N S = e 3 S T SR Sl T L)

Note the P beside some files. This indicates they have non-blank
passwords.

DIR (R)

gives the disk space allocation on drive 0, user files only. Typically:

~

FILE DIRECTORY --- DRIVE @ TRSDOS - 11/18/78

SEQCHECK/TKT LRL= 256 / EOF= e / SIZE= 1 GRANS

TAPEDISK/CMD LRL= 256 / EOF= 2/ SIZE= 1 GRANS
CPRINT/BRS LRL= 236 / EOF= 1 / SIZE= 1 GRANS

DOS RERDY

If a Directory listing cannot fit on the screen, only the first 12 lines
will be displayed. Press any key to see the remainder of the listing,
in increments of 16 lines.

4-19

TRSDOS Commands

DUMP (dump memory to disk)

DUMPWfilespecp(START=X'aaaa’ END=X'bbbb’'[TRA=X'cccc'])
where aaaa, bbbb, cccc are 4-digit hexadecimal addresses

aaaa = starting point in RAM of the machine
language program or data block to be
dumped to disk; aaaa must be greater than
6FFF.

bbbb =ending point in RAM of the block; bbbb
must be no smaller than aaaa

ccee = transfer address; when TRSDOS attempts to
execute the file, it will start at eccc. 1f ccec
is omitted, 402D will be used. This is the
address of the normal re-entry into
TRSDOS (i.e., re-entry with DOS READY
displayed; no re-initialization).

If filespec already exists, its previous contents will be lost.

If filespec does not include an extension, TRSDOS will automatically
assign the extension CIM (core image) to the file.

Once you have dumped a machine language program onto disk, there
are two ways to execute if.

1) Simply type filespec . TRSDOS will load the
file and begin execution at the transfer address.

2) Type DEBUG and then filespec .
After TRSDOS loads the file, it will enter the DEBUG
package. PC will contain the transfer address. You can
then single step the program (I command), call-step
(C command), or execute it in full by typing:

G
Note: A file with the extension /CMD can be loaded and executed
simply by typing the file name, without the extension, and
pressing . TRSDOS will supply /CMD as a default
extension.
Examples:

DUMP GRAPHICS (START=X’7000°, END=X’708R8", TRR=X’7068")

DUMP DATAR/CIM:1 (START=X‘8600°, END=X’8858")

T~ e S B T B R AR PR L T A E T T S T A I S

420

TRSDOS Commands

KILL (delete a file)

l KILLbfilespec —l

This command deletes the specified file and frees the space for use
by the system.

If no drivespec is included in the filespec, TRSDOS will search for
the first drive which contains filespec, and attempt to delete that

file. If the diskette is write-protected, TRSDOS cannot KILL the
file.

Example:

KILL OLDFILE/BAS. PASSWORD

FREE (display free space on all drives)

FREE

This command has no arguments or parameters. It displays the
amount of free space remaining on all drives in use, in terms of files
available and unused granules. (Each diskette can contain up to

48 user files; data diskettes have 67 granules available for user files;
TRSDOS diskettes, 44 granules.)

For example:

—

DRIVE 8 -- TRSDOS 16/21/78 37 FILES, 25 GRANS
DRIVE 1 -—- TRSDOS 18/82/78 32 FILES, 27 GRANS

DOS RERDY

LIB (display library commands)

LIB

Requires no arguments or parameters. This command displays all
TRSDOS system library commands available. These are the
commands which load between hexadecimal 5200 and 6FFF.

For example:

LIB

421

TRSDOS Commands

LIST (list text file contents to display)

LISTpfilespec]

Reads the specified file and lists its contents on the Video Display.
Because LIST gives an ASCII representation of the data in the file,
filespec should refer to a text file. If you LIST a non-text file, the
display will be filled with a meaningless sequence of ASCII and
graphics characters.

Text files include:
. BASIC programs saved with the A option

s data files created by BASIC sequential write (PRINT#n)
statements

@ assembly language source code; etc.

To temporarily freeze the Display during LIST execution, hold down
the SHIFT and @ keys until the listing pauses; press any key to resume
execution. TRSDOS will only accept such a pause after listing a
complete physical record — that’s why you need to hold down the
SHIFT @ keys until TRSDOS *‘notices™ your pause command.

Example:

LIST PROGL/TKT

LOAD (load machine language file)

LOAD#Wfilespec

Loads the specified file into RAM and returns control to TRSDOS.
The file specified must contain Z-80 object code, and normally
would have been created by a DUMP or TAPEDISK command.

LOAD is useful for loading several programs into memory, so that
all of them can then be called by a master program, which may be
another machine language routine or a BASIC program. (Of course,
all the different files must load into non-overlapping areas of RAM.)

To load subsidiary object code programs and then execute them
via a master object code program, LOAD each of the subsidiary
programs, then type the master filename and press [YRiF:] .

Examples:

LORD GRAPHICS
LOAD DATR/CIM:1

4-22

TRSDOS Commands

PRINT (list text file to line printer)

PRINTpfilespec

Works just like LIST, only the output is sent to the line printer. The
file should be in text (ASCII) form.

Examples:

PRINT SEGCHEK/TXT
FPRINT PRGE7/TXT:@

PROT (use diskette’s master password)

PROT[b:d] [b(param|,param . ..])]

where :d = a drivespec, d=0,1,2,3; if no drivespec is
given the first drive is used
param can be any of the following:

param meaning

PW change Master Password

UNLOCK remove passwords from all user files
LOCK assign the master password to all user files

LOCK and UNLOCK are mutually exclusive; use only one.

This command changes the protection status of all non-System files
on the specified drive. To use it, you need to know the diskette’s
Master Password, which is assigned during FORMAT or BACKUP.
The diskette you reference must not be write-protected.

Note: Your TRSDOS diskette has the password, PASSWORD.

To change the Master Password, specify PW as a parameter. To
remove passwords from all user files, specify UNLOCK. To place
the diskette’s Master Password on all user files, specify LOCK.

(The Master Password then becomes the update and access password
for those files.)

Examples:
PROT :1 (UNLOCK)

After you enter this command, TRSDOS asks for the Master Pass-
word for the drive | diskette. If you enter the password correctly,
TRSDOS will remove all user assigned passwords from files on
that diskette.

423

TRSDOS Commands

PROT C(PW, LOCK)

After you specify the Master Password correctly, TRSDOS will
prompt you to enter a new Master Password. This new password
will be assigned to all user files, since the command included the
LOCK option.

A typical display sequence using the PROT command:

ﬁ

DOS RERDY

MASTER PASSWORD 7
DOS RERDY

DIR

FILE DIRECTORY -—- DRIVE @ TRSDOS —- 1@/21/78
TAPEDISK/CMD P SEQCHECK/TXT P VIDSCAN/CMD P

DOS RERDY

Note that all user files are now protected with the Master Password.

RENAME

RENAMEWfilenamel [[ext]l][.psw] [:d] BTOWfilename2|[/ext2)

where filenamel, filenameZ2 are TRSDOS file names,
extl,ext2 are extensions
:d is a drivespec (d=0,1,2,3)
psw is a password

This command changes a file’s name from the first name/extension
to the second name/extension. Note that the second name/extension
should not include a password or a drivespec. The first file’s
specification may include a password and drivespec, as required to
identify a desired file.

RENAME cannot be used to change a file’s protection attributes
or to move it to another drive. The previous passwords, protection
level, and Directory attributes (Invisible for non-Invisible) will be
assigned to the renamed file, and the file will remain on the same
diskette.

RENAME also checks to see that the intended new name does not
duplicate a filename currently on the same diskette. 1f it does, the
command is cancelled and an error message is displayed.

4-24

TRSDOS Commands

Examples:

RENAME MATHPAK TO MATHPAK/BAS
adds an extension to the filename.

RENAME ABCDE/DAT TO ABCDEF/DAT
changes the file name only.

RENAME PAYROLLL/TXT. GSR TO PRAYROLLZ/TXT
changes the filename; the password is retained automatically.

RENAME FILE1:2 TO FILE2
changes the filename of the file on drive 3 only.

TIME (set real-time clock)

TIMEWhh:mm:ss

where hh is a 2-digit hours specification
mm is a 2-digit minutes specification
ss 18 a 2-digit seconds specification

This command sets the clock. On power-up, the clock is reset to
00:00:00.

Note: TRSDOS maintains a 24-hour/day clock format. After
23:59:59, the clock starts over at 00:00:00, and the day is
incremented.

The current time is stored at locations hexadecimal 4040-4046;
these values are updated via the realtime clock as long as interrupts
are enabled.

Example:
TIME 68:24:0608

See DATE and CLOCK

TRACE (dynamic display of PC register)

TRACE[b(param)]
where param = ON or OFF; ON is the default.

4-25

TRSDOS Commands

The TRACE command enables a foreground task which displays the
contents of the user’s program instruction counter (PC register) in

the upper right of the Video Display. The 4-digit hexadecimal value
will be updated every eight milliseconds with the current background
program’s execution address. For example:

TRACE

Since it is a foreground task, TRACE operates at all times — in DOS
READY mode, DISK BASIC, or any other program. To temporarily
disable TRACE, disable all interrupts (CMD*“T” in DISK BASIC).
When interrupts are re-enabled CMD*“R” in DISK BASIC, TRACE
will start up again.

Used with the DEBUG program, TRACE can be invaluable in
debugging machine-language programs. It won’t be of much use
during BASIC program execution, though. To permanently stop
TRACE, execute the command:

TRACE (OFF)

VERIFY (automatic read-after-write)

VERIFY [W(param)]
where param = ON or OFF; ON is the default.

VERIFY
causes TRSDOS to verify all user disk writes (for example, file-writes
from DISK BASIC). This will be useful when you want to be sure
that no data is lost or altered during a disk write. For example,
before you COPY a file, you may want to enable VERIFY.

However, when VERIFY is on, disk accesses are only about 50
percent as fast as normal.
Typing:

VERIFY (OFF)

disables the automatic read-after-write verification.
(note that TRSDOS powers up in a VERIFY (OFF) condition.)

Verify does not affect system table and directory writes; they are
always verified.

T S e R e il S N N R S P W i R ety

4-26

Extended
Utilities

noonI-

Contents of This Section

TRSDOS Utilities ... 2

BACIIP o oeovin v o 2 FORMAT .5 5 a0 vsan svs 65 054 4

Auxiliary Utilitieso 6

TAPEDISK 6 GETTAPE/BAS 10

DISKDUMP/BAS 8 TEST1 e 1

GETDISK/BAS 10 TEST2 oo 12
Section 5 - Page 1

Extended Utilities

TRSDOS Utilities

These are special programs, not strictly a part of TRSDOS, which
you can call to perform some very useful functions. Unlike system
routines and library commands, these extended programs may use
memory locations above hex address 6FFF; therefore any programs
you have in RAM may be lost when you load a utility program.

BACKUP (duplicate a diskette)

BACKUP[B:dI1¥TOY:d2]

where :dl is a specification for the source drive
:d2 is a specification for the destination drive
dl,d2=0,1,2 or 3.

If you omit the drivespecs, BACKUP will prompt you to enter the
source and destination drive numbers one at a time.

This utility duplicates an entire TRSDOS or data diskette. You can
use any two drives for the backup, or you can perform the backup
using drive 0, by swapping source and destination diskettes when
BACKUP tells you to.

If the destination diskette is unformatted, BACKUP will format it,
locking out any defective tracks, and will then proceed to copy

all source disk files onto it. (If the destination disk cannot contain
all the source disk data because of locked out tracks, the backup will
be rejected.)

BACKUP will accept a pre-formatted diskette only when its Master
Password and Diskette Name match that of the source disk. In this
case, BACKUP will skip the formatting step and begin the copy and
verify process. If for some reason, BACKUP rejects a diskette,
erase the diskette with a bulk eraser and try again.

Examples:
BRCKUP
BACKUP @ TO :@
BACKUP @ TO 4

Here’s a typical BACKUP sequence, using only Drive 0.

DOS RERDY

5-2

Extended Utilities

- y

TRSDOS BRCKUP UTILITY VER 2.1

BACKUP DATE <MM/DD/YY) 7

CINSERT SOURCE DISKD>

BACKUP will then prompt you to insert source (original) and
destination (duplicate) diskettes as necessary.

When using two drives for the BACKUP, you won’t have to do any
swapping.

53

Extended Utilities

FORMAT (prepare a data diskette)

FORMAT

This utility lets you prepare data diskettes containing a minimum of
system information and leaving you with a maximum amount of
space for program and data files. (TRSDOS diskettes have 44
granules/55K bytes available for your files; data diskettes,

67 granules/83.75K bytes.

Note: Data diskettes can only be used in drives 1, 2, and 3, except
during a BACKUP or FORMAT.

FORMAT takes a blank (new or ﬁlagnetically erased) diskette,
records track/sector boundaries on it, then initializes it with
directory and bootstrap files.

When FORMAT detects a non-blank diskette, it will display a
warning message:

DISKETTE CONTAINS DATAs FORMAT OR NOT?
Answer Y if you do want to re-format, N is you do not, and press

During the formatting process, TRSDOS will let you specify any
tracks you’d like to lock out, so you can use them for non-TRSDOS
files. Unless you have another (non-TRSDOS) means of accessing the
diskette, don’t lock out any tracks.

FORMAT will lock out any defective tracks, to prevent data from
being lost in these areas.

If you begin to get READ errors during accesses to a diskette, re-

format the diskette. If there are defective tracks, FORMAT will lock
them out, and you’ll be left with an otherwise usable diskette.

5-4

Extended Utilities

To lock out tracks...

Specify them individually or as a range.

Example:
1,3-5 locks out tracks 1,3,4,5.

TRSDOS will never try to write to locked-out tracks.

Here is a typical FORMAT sequence, using Drive 1.

DOS REFIDH‘

DISK FORMATTER UTILITY 2.1

WHICH DRIVE IS TO BE USED ? & ENED
DISKETTE NAME ? MNENERE

CREATION DATE (MM/DD/YY) 7 SRS
MASTER PRSSWORD 7 TRSEE ENIED

DO YOU WANT TO Lmkmnmmesvi

FORMAT THE LOCKED-OUT TRACKS? M [

55

Extended Utilities

Auxiliary Ultilities
TAPEDISK (copy tape file to disk file)

This utility lets you load a SYSTEM tape into RAM, and then dump
it into a specified file on the disk. (SYSTEM tapes are created with
the Editor/Assembler, TBUG, or supplied by Radio Shack.)

Do not attempt to use TAPEDISK to load tape files which load

below hexadecimal address 54F4 (decimal 21748). TAPEDISK
uses this area.

Note: Most Radio Shack SYSTEM tapes designed for use with
LEVEL Il TRS-80’s will not work under DISK BASIC, because of
differences in RAM usage under DISK BASIC and LEVEL IL

To load and execute TAPEDISK, type:

TAPEDISK

TAPEDISK will come up with the prompt,
?

Any time the prompt is displayed on the current line, you can enter
one of the three TAPEDISK commands.

1) Load from tape

C

is the command to turn on the Recorder. (To use TAPEDISK,
you should connect the recorder directly to the TRS-80 tape jack,
not to the Expansion Interface jack.)

Type:

ECNENTER]

When the file has loaded, you can load another SYSTEM tape, or
enter another command.

5-6

Extended Utilities
e a1

2) Dump to disk

Fbfilename| [ext] [.password] :dbaaaahbbbbbcccc

where filename is a TRSDOS filename
/ext is an optional extension;
.password is an optional password specification;
:d is a required drivespec, d=0,1,2 or 3;

aaaa is the hexadecimal starting address in RAM;
bbbb is the hex ending address in RAM;

ccee is the entry point for execution of the file.
All addresses are in 4-digit hexadecimal form.

When you’'re ready to dump the program from RAM onto disk, type in
the F command. For example, if the program loaded into RAM
addresses 7000-70FF, and the entry point is at 700A, you’d type:

7F USRCODE/CMD:1 70080 70FF 700A
After the dump, the prompt will return.

3) Exit to TRSDOS
E

This command returns you to TRSDOS, via the normal re-entry
(no re-initialization).

Below is a typical TAPEDISK display sequence.

r’

DOS REARDY
?C
G ENTER]
DOS RERDY

57

Extended Utilities

DISKDUMP/BAS (examine disk file)

This is a BASIC program. To execute it, you must load DISK BASIC
first, and then load DISKDUMP/BAS:

—

HOW MANY FILES? CRLED
MEMORY S12E7 ENRED

RADIO SHACK DISK BRSIC VERSION 4.1
REFDY

DISKDUMP lets you look at the contents of any of your disk files.
It will help you experiment with various random and sequential disk
output statements, and also help you to debug disk 1/0 routines.

The program is written to dump to the Line Printer. If vou do not
have one connected, change all LPRINTs to PRINTSs (lines
170,240,250) and change line 160 to:

166 GETL. SN

This program prompts you to enter the filename and then to enter
the sector you want to examine. You can simply press
without a number and the sector-by-sector examination will be
sequential, starting with sector 1, the first physical record in the
file.

If you specify a sector number higher than the EOF number

(end-of file), no error message will be given and the “sector’” will
appear as zero-value bytes.

The sectors are printed 16 bytes at a time. These 16 bytes are dis-

played first in hexadecimal code, then with the corresponding ASCII
code. The ASCII representation is surrounded by ! symbols. Periods
are substituted for bytes which have no alphanumeric representation.

Below is a typical DISKDUMP session.

SECTOR DUMP UTILITY 1.1

FILESPEC : [SE

SECTOR NUMBER (OR “ENTER“ FOR NEXT SECTOR) : YRR

Extended Utilities

FILESPEC: ARRAY SECTOR: 1
@2 3E 4C 53 3D 3z BD 97 C8B D3 BE 4C 53 3D 31 BD 41 1 PLB=2. .0 LS=1.A!
16 72 72 61 79 73 20 43 68 61 7B 74 65 72 BD 50 61 Ve wia Civasane Pt
32 &7 65 Z@ 97 D@ BE 23 23 9B BD 8D BD 9B B8 &9 &E Vow wa Wi Raia -
48 73 65 72 74 2@ 70 61 &7 65 73 2@ 38 35 zC z@ 38 '!sasss «seas B85 B!
&4 36 2C 20 61 6E 64 20 38 37 20 66 72 6F &D 2@ 74 6y ... B7 ;
80 6B 65 2B 4C 65 76 65 6C 20 49 20 42 41 53 49 43 : L.... I BASIC!
96 20 6D 61 6E 75 61 6C 29 8D BD BD 44 65 &C &5 74 b iesmema o JeasDawud!
112 63 20 6C 69 LE 65 73 20 33 35 20 61 bE b4 20 34 le awnws 39 4!
128 30 20 66 72 6F 6D 2B 79 &F 75 72 z@d 7@ 72 6F 67 I eiva i wwene W e !
144 72 61 6D 20 b1 bE b4 20 61 64 b4 2B 74 6B 65 73 bawm was wea e et
160 65 2@ 6C 69 6E 65 73 3A 8D 8D 20 z@ 20 zD z@ 36 Ve werais s $ie 6!
176 30 20 46 4F 52 zZ0 49 20 3D 2@ 31 =@ 54 4F 2@ 33 '@ FOR 1 =1 TO 3!
192 8D =@ *0 20 20 20 37 30 20 5@ 52 49 4E 54 z@ 41 L5 7@ PRINT A!
zee 3B 8D 20 20 z0 2@ z@ 38 30 2@ 4E 45 58 54 2@ 49 L 80 NEXT I!
224 8D 8D 61 &E b4 = 2 355 4E 2@ 69 74 ZE BD BD 41 Vowiewaa RUN Al
24@ 6E 6F 74 6B 65 7z z@ 73 !

59

Extended Utilities
e 0 S e S eyl

GET DISK/BAS (copies disk file onto tape)
GET TAPE/BAS (copies tape data onto disk file).

GETDISK/BAS
GETTAPE/BAS

GETDISK/BAS copies any disk file — random or sequential data and
machine-language programs — onto cassette; GETTAPE/BAS reads the
cassette data and writes it into a disk file.

Note: These utilities duplicate the data in the original file. However,
they will not set the end-of-file pointer for sequential files. Therefore,
when you duplicate a sequential file, and then input from it, you may
input invalid data at the end of the highest numbered record. To pre-
vent this from occurring, don’t rely on the EOF (n) function to tell
you when you’ve reached the end.

(You can either count the data items as they are input, or add a
marker at the end of the file, and then check each value input to see
if you’ve reached the end, similar to the way you READ from a
DATA statement.)

These utilities are provided to allow one-drive users to copy their data
files to a revised version of BASIC.

In addition to serving this purpose, the programs may come in handy
whenever you want a cassette copy of a disk data file.

Don’t use GETDISK and GETTAPE to transfer BASIC programs to
Cassette. Use CSAVE and CLOAD; this is much faster.

5-10

Extended Utilities

System Checkout Utilities

Version 2.3 includes two programs to help you determine whether
your disk system is functioning properly. If you are having problems
with the system (disk input/output errors, apparent loss of memory,
spontaneous resets, etc.), try running these tests.

If the tests show the system is okay, then check for other possible
sources of errors — low-voltage “brownout™ conditions or very short-
duration transients on the power line, static electricity discharge as
diskettes are handled, etc. For more information on how to eliminate
external problems, see the Radio Shack booklet, “Information Guide
For New Computer Owners”.

If either test detects an error, repeat the test and make sure the result
is repeatable. (False errors can be caused by electrical transients and
other conditions noted above.) If you are sure the error is repeatable
and is hardware-related, bring the unit in to your local Radio Shack
for repair.

TEST1 (test memory)

TESTI

This program tests the TRS—80’s memory (read only and random
access). In the DOS READY mode, simply type:

TEST1

The program automatically tests all memory locations, no matter
what memory size you have. First it checks read only memory
(ROM); if everything is okay, it automatically goes on to check
random access memory (RAM). If all RAM checks out okay, the
program says so and prompts you to press to return to
TRSDOS.

If the program detects a ROM or RAM error, it will display a de-
tailed message. Repeat the test to make sure it is a valid error condi-
tion. Write the message down and bring your computer in for repair.

Note: TESTI1 changes the entire contents of RAM. Before

running it, be sure you have saved a disk file copy of any valuable
code you may have in RAM.

5-11

Extended Utilities

TEST2/BAS (test stress)

[TEST2/BAS

NOTE: This test is for 32K or 48K RAM Systems Only.

This is a stress test for the entire disk system. It takes about 10
minutes to run. The program can test any combination of drives
0 through 3.

Before running TEST2/BAS, place a system disk in drive 0, and data
disks in the other drives.

Note: During execution, the TEST2/BAS will create several test files.
If any of your files happen to have the same name, they will be
destroyed. To prevent this from happening, and also to prevent OUT
OF SPACE errors, use diskettes which do not contain any of your
own files.

Under TRSDOS, type:

BASIC

HOW MANY FILES? BN
MEMORY SIZE?
RUN "TESTZ/BAS"

The program will ask you to select which drives you want to use. Type
in the appropriate number(s), with a comma after each number except
the last. If you are selecting three or fewer drives, you will need to
press twice.

For example:
WHICH DRIVES ARE TO BE USED?

tells the program to test drive 0 only.
WHICH DRIVES ARE TO BE USED? @:

tells the program to test drives 0, 1 and 3.
WHICH DRIVES ARE TO BE USED7 @

tells the program to test all four drives,

5-12

Extended Utilities

While the program is running, no further keyboard input is required.
The Display will be filled with meaningless messages and characters.
Periodically, the program will print the message, STILL TESTING.
Ignore the random messages on the display. In fact, you can go away
and let the program run; it will take about 10 minutes.

If there are no errors during the test-time, the program will say so,
and will end.

If an error does occur, the program will print an error message and
return you to the BASIC command mode:

READY
>

Write down the message, Check your system for abvious error causes
(empty drive, disk inserted incorrectly, etc.). Put a different formatted
diskette in the drive. Then re-run the test. If an error occurs, and you
cannot trace it to an operator problem, write down the error mes-

sage and bring it with the unit to your local Radio Shack for repair.

5-13

noownI-

Contents of This Section

MO ONDRIVZRDON .« o o v« v s s s 500 v 5 a0 5 w5 s 508 st & 90 2
Disk Organizationcccooin... 2
PO SHUBTUPE oo 5o v s i s 55 0005 i om £ it 6 308 5 500 5 3.0 308 £ 3 3
System Routines for Assembly I/0 5
Data/Device ControlBlocks 6
Physical and Logical Records 7
Fundamental TRSDOSI/OCalls 8
TRSDOS Error Codes/Messages 12

Section 6 - Page 1

Scanned by Ira Goldklang -wwwtrs-80.com

TRSDOS Technical Information
e ———— e S == =]

Memory Organization

The TRS-80 Disk Operating System is comprised of 1K of ROM
resident CIO (Character-oriented I/O) drivers and 4K of RAM drivers,
schedulers, tables, pointers, etc. The ROM resident CIO drivers are
also used by LEVEL II BASIC and therefore are part of its 12K
ROM requirement.

Since LEVEL Il is upward compatible with DISK BASIC, an
additional 0.5K of RAM is required for both versions of BASIC.

This means that user memory starts at hex 5200, resulting in 11.5K
of user RAM in a 16K machine.

Note: The memory which is completely untouched by both
TRSDOS and DISK BASIC code begins at hex 7000.

TRSDOS is comprised of a resident system and several overlays
which are loaded from disk as the need arises (for example, to open
or close a file).

The system has a modular design. System entry-point vectors

are in the lowest portion of the 4K RAM, followed by the interrupt
handling, disk file handling, task scheduling and general purpose
resident system routines. System buffers and overlays comprise the
last portion of the 4K RAM requirement.

Since all major system commands are actually loaded as needed
from disk in the form of utilities (the ‘“‘library commands” and the
extended utility programs), the TRSDOS system facilities can easily
be enhanced without affecting the RAM memory requirement.

Disk Organization

Each TRSDOS system diskette contains a TRSDOS system, a utility
command library, a file directory, and system tables.

The minimum system overhead amounts to one full track of directory
information and a half track of TRSDOS bootstrap program and
other information. This means that every TRSDOS diskette is self-
loading, although it may or may not actually contain the TRSDOS
system. This is done to prevent the Computer from attempting to
bootstrap a diskette containing only user data files.

The utility command library is optionally available on the diskette.
Since the utility command programs are not always required,

it will often be advantageous for multi-drive users to format
diskettes for use in drives 1 through 3. Such “data diskettes”
contain a minimum of system code, leaving more space for user

S

6-2

TRSDOS Technical Information

files. Maximum file size is limited only by the physical size of the
diskette, since a file must be wholly contained on one diskette.

Each diskette is single-sided and has 35 tracks of information.
Each track contains 10 sectors of 256 bytes each. See Mini Disk
Operation, “How a Diskette Works”.

Normally, data read /write operations may only be initiated at sector
boundaries, and must consist of exactly 256 bytes. However,
TRSDOS allows the user to have maximum flexibility with minimal
effort by automatically blocking and de-blocking all file accesses

to user-specified logical record lengths, even if this requires
“spanning” of two sectors.

The system disk file structure allows maximum use of disk file space
by automatically segmenting files across a diskette in several small
pieces. These pieces are correlated into one logically contiguous

file by the system without your needing to know the physical file
location. This structure eliminates time-consuming disk-packing
operations.

File Structure

A TRSDOS file is composed of one or more segments of storage
space. Each segment consists of from one to 32 physically
contiguous granules of storage. A granule is the minimum
allocatable unit of storage, and consists of five sectors (1.25K bytes).
(See Figure below).

Since a file is always lengthened by granules, a small amount of free
storage is generally present at the end of every file. This free
storage allows minor file additions to be made in space which is
physically contiguous to the file.

The effect is to decrease the amount of “thrashing” present in a file
which has had frequent additions made. (A wholly sector-mapped
system could not offer this benefit.)

Every time a disk file is extended (either initialized or lengthened),
extra granules may be allocated to that file, depending on the file’s
accumulated length, diskette space, saturation, etc. These extra
granules, along with all granules after the one containing the file’s
EOF mark, are recovered and returned to the system when the file
is closed.

6-3

TRSDOS Technical Information
il oo rimee e e e e e e e . S SHEms ke e e e e

A TRSDOS file

ke SEGMENT | | [SEGMENT 2

SEGMENT: |_GRANULE | [GRANULE 2 | [GRANULE N
GRANULE:| SECTOR X | SECTOR X+l SECTOR X+4
SECTOR: BYTE 256

LRN: Logical Record Number, used to specify an individual,
user-defined logical record. Such a logical record is the
smallest unit of information which can be addressed
during disk input/output (a physical record is the unit
which is actually read from or written to disk).

File: A group of logical records; the largest unit of information
which can be addressed by a TRSDOS command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for a particular
file.

6-4

TRSDOS Technical Information

System Routines for Assembly-Language 1/O

This information is provided for customers who wish to write their
own assembly level I/O routines. An explanation of the calling
sequence and parameters for each necessary 1/O routine is given.

A knowledge of Z-80 machine code is assumed.

The following notations are standard in this section:

HL=> xxxx Registers HL contain the address of (point to)
xxxx in machine format. (If address of
xxxx=34B2H then the values in the registers are:
H=34 ;1=B2)

DE=> xxxx Registers DE contain the address of (point to)
xxxx in machine format. (If address of
xxxx=5AF1H then the values in the registers are:
D=5A ; E=F1)

B=xx Register B contains the numeric value of xx in
binary form. If xx=64 decimal, then B=40H.

A= xx Register A contains the numeric value of xx in
binary form. If xx=127 decimal, then A=7FH.
Register A is used to return the TRSDOS error
code for I/O calls. A complete list of error codes
and their meanings appears at the end of this

chapter.

Z=0K Zero flag is set (OK) if successful return from the
system routines.

X'nnnn' Hard RAM address in hex notation (e.g., 402D is
X'402D").

LRL Logical Record Length. 1-255 bytes only. You

can define records any length you wish up to 255
bytes maximum. A length of zero is a special
case for physical records only, and indicates

the LRL=256 bytes.

BUFFER 256 user designated bytes in RAM for TRSDOS
to read sectors from or write sectors into. If
LRL=0, this area is the responsibility of the user
to manage before and after I/O. TRSDOS
manages this area if LRL is between 1 and 255
bytes. Do not alter this area when using logical
record processing.

UREC User record: the address of the contiguous
RAM byte-string assigned by the user as his
logical record area. Its length must be equal to
LRL. It is a different area from BUFFER.

sSeaeaea———--—-——-—-—-— e e N e A W T R B A

65

TRSDOS Technical Information

DCB before OPEN and after CLOSE:

The DCB is defined as 32 contiguous bytes of RAM designated by
the user. Before OPEN and after CLOSE, it is a left justified,
compressed (no spaces) ASCII string, as in a standard TRSDOS
filespec:

CONTENTS OF 32 - BYTE DCB

8 16 24 32
rr—r 1 1 r1rr...rrrrrrr.rr1r 11 1rr1rr1r1r171
FILENAME/ /EXT.PASSWORTD :DS$pBbEUdBENEE
I A (N NN S N Y N N T S S Y Y e s o s e |

Notes: /EXT, PASSWORD, :D are optional.
$ stands for a carriage return (X'0D)
¥ stands for a blank (X'20")

Explanation of DCB while OPEN:

Ish/msb is least significant byte followed by most significant byte in
780 RAM format (i.e. addr=7CC8 in RAM is C8 7C).

Addr. Len. Explanation

DCB+0 — 3 — Reserved
+3 — 2 — Physical Buffer address (Isb/msb)
+5 — 1 — Offset to delimiter at end of current record
+6 — 1 — File drive number residence
+7 — 1 — Reserved
+8 — 1 — EOF offset of last delimiter in last physical record
+9 — 1 — LRL (logical record length)
+10 — 2 — NRN (next record no. — open sets=X'0000" — Isb/msb)
+12 — 2 — ERN (ending record no. — last in file — lsb/msb)
+14 — 18 — Reserved

NRN Next Record Number defines which record is to be read or
written by the next system call for READ or WRITE. Itis
automatically incremented by one after each system call. In order to
process random files, use the POSN call to direct TRSDOS to the
record you wish to transfer next.

ERN Ending Record Number is the last record number currently
in the file. It is put into the directory at CLOSE time, so if it is
expected to be correct, the user must close his files after adding
records to a file. This value may also be used to position to end of
file so that new records may be added to the end of the file. To
position to the end of file use a call to POSN with a record number
of ERN+1. POSN is described later.

6-6

TRSDOS Technical Information

Physical and Logical Records in TRSDOS

A physical record is defined as one sector of disk. One sector of disk
contains 256 user data bytes. The artificial term “granule” is
defined to be 5 sectors of disk space. There are 2 granules on each
of the 35 tracks on the disk. A granule is the least amount of space
allocated by TRSDOS. For programming purposes, the physical
records in a file are numbered from 0 to N. The largest record
number (N) in a file will then be five times the number of granules
allocated minus one ((5*G)—1). All TRSDOS granule allocations

are made as needed at the time of write, not when the file is

created.
Bytes Sectors Granules Tracks Disk
256 1 — — —
1280 5 1 — —
2560 10 2 1 —
89600 350 70 35 1

Disk Space Table : For each 5-1/4” Disk Drive

A logical record is defined by the user of TRSDOS. It may be
anywhere from 1 to 255 bytes in length. Once a file is opened with
a specific LRL (Logical Record Length), the length is fixed until
the file is closed. To change a file’s LRL, you must CLOSE it and
re-OPEN it with the new LRL.

Each opening of the file sets a single, fixed record-length.
TRSDOS will “block™ logical records into (or from) one physical
record for maximum space utilization on the disk.

Blocking is putting more than one logical record into one physical
record. For instance, four 64-byte logical records will fit into one
256-byte physical record. A logical record may be broken into two
parts by TRSDOS in order to fill the last portion of one physical
record entirely before beginning to use the next physical record
(i.e. records are spanned). This occurs when the physical record
length is not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical
record length of O bytes at the time of INIT/OPEN and must himself
manage the contents of the physical record buffer area of 256 bytes.
TRSDOS will not move a logical record for the user if LRL=0; in
this particular case it will only read/write the physical record
to/from the buffer.

6-7

TRSDOS Technical Information

Fundamental TRSDOS 1/0O Calls

There are eight fundamental TRSDOS routines involved in handling
file I/O. These are:

INIT Creates a new file in the directory and opens it.
No granule allocation is done.
OPEN Opens an existing disk file.

POSN Position for reading/writing a particular logical
record.

READ Reads one logical record into RAM from disk or
from the physical buffer.

WRITE Writes one logical record from RAM onto disk or
into the physical buffer.

VERF Writes then verifies by reading back and comparing
to the original data written from RAM. Only
pertains to LRL=0 physical records.

CLOSE Closes an open file.

KILL Closes a file and erases it from the directory.

The detailed calling sequences and discussions for each of these routines
follow. Note that all of these system calls use register F and do not
restore its value before return. In order to properly apply this data,
you should read through all of these descriptions and clear up all of

the points that are not obvious to you by using other reference
materials. If you are successful in doing this you will find that
TRSDOS is a workable tool for your programming ideas. The jump
vectors supplied here and the descriptions especially pertain to
TRSDOS Version 2.1 only. Future releases of TRSDOS may alter
some of these descriptions or addresses.

INIT (jump vector = X’4420’)
INIT is provided as an entry point to TRSDOS which will
create a new file entry in the directory and open the DCB
for this file. INIT scans the directory for the filespec name
given in the DCB. If the filespec name is found, INIT
simply opens the file for use. If the name is not found,
a new file is created with the filespec name.

entry: HL=>BUFFER (see beginning of this section for notation)
DE=>DCB
B=LRL
CALL 4420H
exit: Z=0K
C carry flag is ON if a new file was created
A=TRSDOS error code. (Error codes listed at end of
this chapter)

6-8

TRSDOS Technical Information

OPEN (jump vector = X’4424’)

OPEN provides a way to open the DCB of a file which
already exists in the directory. The DCB must contain
the filespec of the file to be opened before entry to OPEN,

entry: HL=> BUFFER

exit:

DE=> DCB

B=LRL

CALL 4424H

Z=0K

Z=0 if file does not exist.
A=TRSDOS error code.

POSN (jump vector = X’4442’)

POSN positions a file to read or write a randomly selected
logical record. Since it deals with logical records, the
proper computation is done to locate which physical
record(s) contain the data. Following a POSN with a
READ or WRITE will transfer the record to/from RAM.

Note that positioning to logical record zero sets the file
to read the first logical record in the file. To position to
end of file in order to add new records onto the end, use
the record number ERN+1 (see page 2).

entry: DE=> DCB (must have been opened previously)

BC= Logical record number to position for.
CALL 4442H

exit: Z=0K

A=TRSDOS error code.

READ (jump vector = X°4436’)
If LRL>0, READ transfers the logical record whose number is

in the DCB as NRN (see page 2) into the RAM area
addressed as UREC for the length LRL as defined at open
time. The record comes from the RAM BUFFER defined
at open time. If TRSDOS must read a new physical record
to satisfy the request, it will do so. ““Spanned” logical
records will be re-assembled as necessary. READ auto-
matically increments NRN by one in the DCB after the
transfer is completed. INIT/OPEN sets NRN=X'0000’ in
order to read the first record with the first READ.

If LRL=0, READ transfers one physical record into the RAM

BUFFER, which was defined at open time, from the disk
file. Registers HL are ignored. READ increments NRN
as above.

6-9

TRSDOS Technical Information

entry: HL=> UREC if LRL is not zero. Unused if LRL=0.
DE=>DCB
CALL 44364
exit: Z=0K
A=TRSDOS error code. (EOF=X"1C" or X"1D")
(see errors 28,29 for EOF or NRF)

WRITE (jump vector = X’4439’)

IF LRL>0, WRITE transfers the one logical record from
the RAM area addressed as UREC for the length LRL as
defined at open time. The record goes into the RAM
BUFFER which was defined at open time. If TRSDOS
must write a physical record in order to satisfy the
request, it will do so. ““Spanning” will be handled by
TRSDOS as necessary. At INIT/OPEN time the DCB
value of NRN is set to X'0000’ so that the first record will
be written. After each logical record is transferred, the
NRN value in the DCB will be incremented by one.

IF LRL=0, WRITE transfers one physical record from the RAM
BUFFER into the disk file using the NRN in the DCB.
BUFFER IS DEFINED at INIT/OPEN time only. The DCB
value NRN is updated as above, after the WRITE.

entry: HL=> UREC if LRL is not zero. Unused if LRL=0
DE=> DCB
CALL 4439H

exit: Z=0K
A=TRSDOS error code.

VEREF (jump vector = X’443C’)
The only difference between VERF and WRITE is that
VERF writes one physical record to disk and then reads
it back into a special TRSDOS RAM area not defined by
the user. This special area and the original write buffer

are then compared byte by byte to assure that the record
was successfully written.

entry: HL= > Same as WRITE above.
DE=> DCB
CALL 443CH

exit: Z=0K
A=TRSDOS error code.

6-10

TRSDOS Technical Information

CLOSE (jump vector = X’4428’)

CLOSE closes a file from the last processing done. It is
very important to do a CLOSE on every file opened before
the program ends. If you do not close a file, the directory
entry for this file is incorrect if any new records have been
written into the file. Other cases are not given here, but it is
very important to TRSDOS that all of the “housekeeping”
is complete for file management.

entry: DE=> DCB

exit:

CALL 4428H
Z=0K
A=TRSDOS error code.

KILL (jump vector = X’442C’)

KILL deletes the directory entry for an open file and then
completes the close on the DCB. The disk space released
by the old file is now re-useable for other purposes.
Otherwise KILL is the same as CLOSE.

entry: DE=> DCB

CALL 442CH

exit: Z=0K

A=TRSDOS error code.

Supplementary Information

Other routines and addresses which may be of interest are defined
here. Pay particular attention to the error routine. It does NOT
perform error recovery. It displays TRSDOS error messages on the
video display.

()
(2)

(3)

CALL 402DH — Normal return to TRSDOS at program end.

X'4318": address of the 64-byte buffer that contains the
last TRSDOS command that was entered. Useful
to decode special parameters entered when
program was executed (run).

If HL => &-byte buffer, then:
CALL 446DH returns the time of day into the 8 bytes
in the ASCII format — HH:MM:SS
CALL 4470H returns the date into the 8 bytes in the
ASCII format — MM/DD/YY

Binary forms of the time and date are located in TRSDOS
RAM at these locations:
X'4040' clock — real time clock heartbeat count. 25ms.
X’'4041’ time — binary — 3 bytes — sec,min,hrs
X'4044' date — binary — 3 bytes — yr, day, mon

611

TRSDOS Technical Information
[Eonim e et e e e e ——]

(4) Printing TRSDOS error codes on the video display.

CALL 4420H Example of system I/O call. Any call
is ok. Zero flag not set means an error
has occurred during the 1/O attempt.

JR Z,0KGO Ignore error message display if no
error.

OR 80H Optional for detailed error message.
Register A already contains proper
code for a single line message display.

CALL 4409H Display error message on video screen.

Optional user error recovery code goes here

OKGO continue with program here - - -

TRSDOS Error Codes — Returned in Register A

decimal prob. error
number causes™ description
00 - No error
01 MD Parity error during header read
02 D Seek error during read
03 XK Lost data during read
04 MD Parity error during read
05 FMD Data record not found during read
06 P Attempted to read system data record
07 P Attempted to read system data record
08 UP Device not available
09 MD Parity error during header write
10 D Seek error during write
11 XC Lost data during write
12 MD Parity error during write
13 FMD Data record not found during write
14 XD Write fault on disk drive
15 UDX Write protected diskette
16 PS Illegal logical file number (dcb bad)
17 MPDS Directory read error
18 MPDS Directory write error
19 UP Iilegal file name (dcb bad)
20 MPDS GAT read error (Granule Allocation Table)
21 MPDS GAT write error
22 MPDS HIT read error (Hash Index Table)
23 MPDS HIT write error
24 UP File not in directory
25 Up File access denied (protection violation)

*See Explanation, next page.
T e e

612

TRSDOS Technical Information

decimal prob. error

number causes description
26 UP Directory space full (48 files max)
27 UP Disk space full (70 granules max)
28 P EOF encountered (End Of File)
29 P NRF (No Record Found) out of file range
30 UP Full directory. File can’t be extended.
31 UpP Program not found
32 Up Illegal drive number specified
33 UP No device space available for new device
34 MPUS Load file format error. Not a program.
35 XCS Memory fault
36 PUXC Attempted to load ROM memory
37 P Illegal access attempted to protected file
38 UP File has not been opened
39-62 Not defined yet. Reserved
63 P Unknown error code

Explanation of probable cause codes: (column 2)

C =TRS80 CPU fault
D = Disk drive fault

P = User program error
S =TRSDOS fault. Reboot

F = Diskette not formatted U = User procedural error
M = Diskette media fault X = Expansion Interface fault

6-13

DISK
BASIC

mmo>»CoO2>r

Contents of This Section

Introduction 2
Enhancementsto LEVEL Il 6
DiskFeaturesciiiiiieiiiin. 30
File Manipulation 32
D ABOOBE . . o v n s o w5 905 5 5.6 030 § 908 008 1k 00 3 0 37
Sequential Access Techniques 63
Random Access Techniques 70
DISKBASICErrorMessages 82
Section 7 - Page 1

Scanned by Ira Goldklang - www.trs-80.com

DISK BASIC

Introduction

DISK BASIC is a set of enhancements to LEVEL II BASIC, plus
features to allow disk input/output of BASIC programs and data.
It is a memory image file stored on the TRSDOS software diskette
with the name BASIC and extension /CMD,

When DISK BASIC is loaded into RAM, it automatically takes
control of the LEVEL II BASIC ROM program, using almost all of
its routines and adding others. This is possible because LEVEL II
was designed with upward compatibility built-in.

BASIC occupies memory beginning at hex address 5200 (decimal
20992).

To load and execute DISK BASIC, first power-up the Disk Operating
System (see System Operation), so that

DOS REARDY
is displayed. Now type:

BASIC

TRSDOS will load BASIC into RAM, and BASIC will begin the
“initialization dialog”. This is a series of questions and answers
which tell BASIC how to organize memory according to your needs.

NOTE: If you want to have the renumber command available, type
BASICR instead of BASIC.

The first question is,

HOW MANY FILES?_

You repond with the maximum number of disk files that will be
open (in use) at any one time — any number from zero to 15.

(Every program or data set you store on the disk is referred to as a
“file”. In fact, everything on the disk, including system software,
exists in the form of files.)

The number you enter tells BASIC how many disk 1/O buffers and
data control blocks to create (for definitions, see Glossary). If 7 files
are to be in use at once, then n buffers will be required. Each buffer
will take 290 bytes from your available RAM (256 for the buffer plus

34 for a data control block [DCB]), so don’t enter an unnecessarily
large number.

If you simply press without entering a number, BASIC
will use a default value of 3; so you’ll be able to have 3 file buffers
in use at once.

7-2

DISK BASIC

Note: DISK BASIC automatically creates a buffer for loading, saving
and merging BASIC programs. This buffer exists in RAM below

any data file buffers you may request. It is always available for
program 1/O, regardless of how you answer the FILES? question.

Suppose you’re going to be using 2 files: 1 for inputting data,

1 for outputting data. Then you might answer 2 to the FILES?
question. However, if only 1 of these files will be open at once, then
you really only need to reserve 1 file buffer/control block.

Examples:

HoW MANy FILES? @ EYRED

causes BASIC to set aside zero buffers for 1/O to disk files. You
won’t be able to open files, but you will have the maximum amount
of RAM for use by your program.

HOW MANY FILES? 8

tells BASIC to create 15 I/O buffers and control blocks; you will
then be able to have 15 files open at once; however, this will reduce
your available memory by 15%290 = 4350 bytes.

HOW MANY FILES?

tells BASIC to use a default of 3 for the number of files to be in use
at once.

After you answer the FILES question, BASIC will ask:

MEMORY SIZE? _
Simply press [FYAMF] without typing a number.

MEMORY SIZE?

You will then have the maximum amount of RAM available for use
by BASIC.

If you will want to load and use machine language programs or
routines, you will have to protect your BASIC memory from these
machine language programs.

You would then respond with the highest memory address (in decimal
form) you want BASIC to use for storing and executing your BASIC
programs. Addresses above the number you specify will then be pro-
tected from use by BASIC.

7-3

DISK BASIC

Example:
MEMORY SI1ZE? 4
causes BASIC to protect addresses above 32000. If you have 16K

of RAM, this means that you’ll have 32767-32000= 767 bytes
protected for storing your machine language routines.

Here’s how you might use your protected memory:

You can load machine-language programs or routines into high
memory, and then access these routines from DISK BASIC via
specially defined USRn functions, or via the SYSTEM command.
These machine language routines may be loaded from tape using the
SYSTEM command, LOADed in the DOS READY mode, or placed
in memory one byte at a time using either DEBUG or BASIC POKE
commands. If you do not reserve memory, such routines will be
destroyed during execution of BASIC statements.

Refer to the Memory Map for decimal addresses of the various
TRS-80 memory configurations (16K, 32K, 48K).

After you answer the MEMORY SIZE question,

RADIO SHACK DISK BRSIC VERSION 1.1
RERDY
b

will be displayed. You are now operating under DISK BASIC.

To exit BASIC and return to the DOS READY mode, type:

cHp*s”

This results in a normal return to DOS — without re-initialization of
the system. If you have a BASIC program in RAM, it will be lost, so
be sure to save it on disk or tape before using CMD”’S”

You can return to BASIC with program intact if you haven’t changed
user memory while in TRSDOS. Use BASIC * or BASICR * depending
on which BASIC you had loaded previously.

Note: The following technical information explains how to protect

BASIC memory from machine language programs loaded through
TRSDOS.

DISK BASIC

Special Memory Protection Feature

Note: This information only concerns those customers who need
to load machine language programs or routines through TRSDOS
and retain these programs in DISK BASIC memory.

During execution of any of the TRSDOS commands to load BASIC
(BASIC, BASICR, BASIC *, BASICR *) BASIC uses the highest 64
bytes of RAM in your Computer. If you have a machine language
routine stored in this area, it will be wiped out.

There is a way to protect such programs. BASIC does not search
memory for the top of RAM; it simply gets the value from TRSDOS.
TRSDOS generates this value during initialization, and stores it in
addresses 4049-404A (hexadecimal), referred to below as TOPMEM.
The least significant byte of the address is stored first (in 4049), then
the most significant byte.

For example, in a machine with 32K RAM (highest address: BFFF),
TRSDOS stores the following during initialization:

HEX ADDRESS CONTENTS
4049 FF
494A BF

To protect a machine language program in high memory, simply set
TOPMEM to point to the address just below the program. This can be
done with the DEBUG command to modify memory, “M”.

For example, suppose you have a 32K RAM machine and you want to
protect the top 100 bytes of RAM (BF9C-BFFF). Then you store the
address BF9B in TOPMEM, as follows:

HEX ADDRESS CONTENTS
4049 9B
404A BF

Now when you type either BASIC, BASICR, BASIC * or BASICR *,
BASIC will use the 64 bytes below BF9C. When the MEMORY SIZE
question comes up, reserve memory as you normally would.

For example, in the case described above, after putting address BF9B
into TOPMEM and calling BASIC, you could simply press

to the MEMORY SIZE question. BASIC will only use addresses below
BF9C.

MEMORY SIZE7?

7-5

DISK BASIC

Enhancements to LEVEL I1 BASIC

DISK BASIC adds many features to LEVEL II which are not disk-
related. They are listed below along with abbreviated descriptions.
Detailed descriptions follow in alphabetical order.

&H Hexadecimal-constant prefix
&0 Octal-constant prefix
CMD”’D” Enable and load the real-time debugging program
CMD “I” Return a command to TRSDOS
CMD""R" Enable interrupts (start real-time clock)
CMD"'S" Normal return to TRSDOS (jump to EXIT routine)
CMD"T" Disable interrupts (turn off real-time clock)
DEF FN Define an implicit BASIC-statement function
DEF USR Define the entry point for an external
machine-language routine
INSTR Instring function; find substring in target string
LINE INPUT Input a line from keyboard
MIDS= Replace portion of target string (used on left
of equals sign)
NAME Renumber a program (BASICR only).
TIMES Get time and date from real-time clock
USRn Call external routine (#=0,1,2,...,9

Cassette Operations

Before any BASIC cassette input or output operation, you must
disable interrupts with the CMD"T" command. This is because such
cassette operations are timing-sensitive and cannot work if they are
being interrupted every 25 milliseconds. When the cassette operation

is complete, you can re-enable interrupts by executing the statement
CMD"R"". .

CLOAD allows no filename in DISK BASIC. Therefore you cannot
use such a filename to sort through several tape files. CLOAD will
always load the first file encountered on the tape. CSAVE, however,
still requires the filename. This way, programs CSAVEd under
DISK BASIC can be loaded and sorted through via the LEVEL 11
CLOAD*filename™ command.

CLOAD? (CLOAD-verify), used in LEVEL II to compare a BASIC
program in RAM with one on tape, will not work with programs
saved on tape under LEVEL Il. It will work with programs saved
under DISK BASIC.

7-6

DISK BASIC

Error Messages

When an error occurs, DISK BASIC “spells out™ the full error
message, not just the abbreviation. This saves you from having
to look it up.

Example:

CIIGESE ENTER
DISK BASIC responds with:

OUT OF STRING SPARCE

Note: The ERROR function, used to simulate error conditions, will
work only with non-disk error codes.

&H and &0 (hex and octal constants)

Often it is convenient to use hex (base 16) or octal (base 8)
constants rather than their decimal counterparts. For example,
memory addresses and byte values are easier to manipulate in hex
form. &H and &O let you introduce such constants into your
program,

&H and &O are used as prefixes for the numerals that immediately
follow them:

&Hdddd
where dddd isa 1 to 4 digit sequence composed of
hexadecimal numerals 0,1,...9,AB, ... F.
&0ddddd
where ddddd is a sequence of octal numerals 0,1,...,7.

and &O0ddddd< =177777 decimal.
Note: The O can be omitted from the
prefix &0. Therefore &Oddddd=&ddddd.

The constants always represent signed integers.

Therefore any hex number greater than &H7FFF, or any octal
number greater than &077777, will be interpreted as a negative
quantity. The following table illustrates this:

Octal Hex Decimal
&l &HI 1
&2 &H?2 2
&77777 &H7FFF 32767
&100000 &HS8000 -32768
&100001 &H8001 -32767
&100002 &H8002 -32766
&177776 &HFFFE -2
&177777 &HFFFF -1

7-7

DISK BASIC

Hex and octal constants cannot be typed in as responses to an
INPUT prompt or be contained in a DATA statement. Often the
hex or octal constant must be enclosed in parentheses to prevent a
syntax error from occurring.

Examples:
PRINT &HS5200, &051000

prints the decimal equivalent of the two constants (both equal
20992).

POKE &H3C08, 42

puts decimal 42 (ASCII code for an asterisk) into video memory
address hex 3C00.

168 FOR I=(&H3CBB) TO (&HIFFF) STEP (&H4@)
208 IF A=(&HZ7ES) THEN A=A+l

208 POKE A%, (XX AND &HFF)

Masks the most significant byte of X% and POKEs the result into
location A%.

CMD“D” (execute DEBUG program)

CM DIIDIF

Executing this statement causes the TRSDOS debugging program to
load and execute. (See TRSDOS Commands, DEBUG.) Your BASIC
program is unaffected, since DEBUG loads below DISK BASIC.

To return to BASIC without re-initialization, type

W ENTER]

The READY message will appear and you can continue in BASIC.

Once CMD"'D" has been executed, DEBUG will take over whenever
you press the BREAK key. Pressing G will return you to
BASIC again. Type CONT to continue any program that was
executing when you typed BREAK.

To return from DEBUG to the BASIC initialization sequence, type

G5200 '3 - You will lose any BASIC program text or
variable values.

7-8

DISK BASIC

Examples:
16 - PROGRAM: DEBUG
118 “ EXAMPLE OF EXECUTION WITH DEBUG WITHIN A PROGRAM
128

128 CLS: PRINT TAB(15); "DEBUG EXAMPLE": PRINT

148 PRINT"ENTERING DEBUG"

156 FOR I=1 TO S@@: NEXT I “DELARY A WHILE

16@ 7

178 7 ##* ENTER DEBUGGING PACKAGE e

1868 -

1%a CHMD"D"

280 7

210 7 ##k RETURN HERE WHEN "G" ENTER TYFED IN DEBUG ##:*
228 ¢

233 CLS: PRINT: PRINT "YOU HAVE RETURNED FROM DEBUG"
2408 END

CTYENTER

DEBUG EXAMPLE

ENTERING DEBUG

7-9

DISK BASIC

r
AF = 44 42
BC = 69 1
DE = 69 ES
HL = 48 B7
RF’= FF FF
BC’= 4D BE
DE‘= 81 @7
HL = 4D @@
I¥ = 48 15
1Y = FF FF
SP = BD &C
PC = 57 @8
1810
1826
1830
6 B 1640
_

69 :

~Z----N-
=> 57 49
=> 44 22
=> 6955
SZAHIPNC

= 515
=> 4D 4F
=> F2 51
=> @l E3
=> FF F3
=> BA

= E1C9
=> 28 10
=> 28 63
=> (@ 28
=> DE @@

2B

4E
ca

FF

-
Fa

=

65
@

21
aa

' F&

aC
7E
D
co

ca

21

EC
45
ab
a7
4@
20
@3
28
28
8

F o0

@2
@
48
58
c2
oa
44
F@
@z
41

5%

&2

=
e

FE
a4
Ba
Ba
Ei
FE
2B
36

Bl @@ &z

> 4F

FD
2

8o <
41 <
41

21
48
515

Co D

2C
36
20
g2

41

2 86
oE ae

{ &7
-

9 4F

Ch
44
Cz
@6

13

 FE ¢

Ee
a5
i@

4D
A
54

24
Fz
4F
9F
e
11

14

_

7-10

YOU HAYE RETURHED FROM DEBUG
RERDY
>

DISK BASIC

CMD*‘I”’ (exit to TRSDOS and issue a simple command)

CMD *“I"’, operator-command

where operator-command is a string
expression defining any TRSDOS
command or any user command
file. Typically, operator-command
is a constant enclosed in quotes.

Note that parameters are not
allowed after the operator-command;
if supplied, they will be ignored.

This is similar to CMD*“S”, except that it lets you pass an operator
command for TRSDOS to execute.

Examples:

CMD "I"s "INVADE" [3¥j33;]

returns you to TRSDOS and executes the command file INVADE.
CMD “I"s "DIR"

returns you to TRSDOS and executes the Directory command.

If you use the command:
CMD "I", "DIR 1 (A)"

TRSDOS will IGNORE the parameters “:1 (A)”, and show you a
directory of Drive 0.

CMD*“I” cannot be used with TRSDOS commands which require
parameters, like KILL, LIST, PRINT and COPY.

DISK BASIC

CMD*“R?” (start clock [enable interrupts])

CMD"”R"”

Execute this command immediately after completion of a cassette
input/output operation to re-start the real-time clock. See CMD"T".

CMD*S” (return to TRSDOS)

| cMps”

Execute this command to initiate a normal return to the Operating
System command mode. This will not re-initialize the system, but
merely get you out of BASIC.

Be sure to save any BASIC program on disk or tape before using
CMD"S", as your resident BASIC program will be lost.

CMD*T” (stop clock [disable interrupts])

CMD“T”

You must execute this command immediately before any BASIC
tape input/output operation. Such operations are timing sensitive

and cannot allow the interrupt-driven tasks (such as the real-time
clock, TRACE, and CLOCK-display) to “‘steal” time.

Here are the commands which must be preceded by execution of

CMD"T":
CLOAD CLOAD?
INPUT #-1 CSAVE
INPUT #-2 PRINT #-1
SYSTEM PRINT #-2

After completion of these operations, you can execute a CMD""R"
to re-enable interrupts.

Example:
1@ OPEN"1", 4, "TEST/BRS"

20-CMD"T": INPUT#4.A.B.C
3@ CMD"R"

7-12

DISK BASIC

Note: After CMD”D", you can use CMD"”T" to prevent BASIC from
transferring control to the DEBUG program when BREAK is pressed.

DEF FN (define function)

DEF FN varl(var2{,var...|)=exp

where varl will be the name of the function, and is any
valid LEVEL II variable name
var2 and subsequent var-items are
used in defining what the function does
exp is an expression usually involving the variable(s)
passed on the left of the equals sign

This statement lets you create your own implicit functions. That
is, you only have to call it by name and the implicit function you
defined will automatically be performed. Once a function has been
defined with the DEF FN statement, you can call it simply by
referencing the function name prefixed by FN. You can use it
exactly as you’d use one of the intrinsic functions, e.g., SIN, ABS,
STRINGS.

The type of variable used to name the function determines what type
of value the function will return. For example, if the function name
has the single-precision attribute, then that function will return a
single-precision value — regardless of the precision of the arguments.

Examples:

DEFFNR$(TITLES, GRAPHICSZ)=STRING$(LENCTITLES), GRAPHICSZ)

The function A$ will require two arguments — one integer, one
string; and it will return a string value.

DEFFNRC! (R)=1/(RA*R)

The function RC! requires one argument, and returns a single-
precision value, regardless of the precision of the argument.

The particular variable names you use as arguments in the DEF FN
statement are not assigned to the function; when you call the
function later, any valid variable name of the same type can be
used. Furthermore, using a variable as an argument in a DEF FN
statement has no effect on the value of that variable.

The function must be defined with at least one argument — even if

this argument is not actually used to pass a value to the function.
For example:

DEF FNRC(RA>=RND(@)

7-13

DISK BASIC

Examples:

10 DEFFNMLT{ASE) = A * B
2@ INPUT "ENTER ARGUMENTS": XY
3@ PRINT "PRODUCT IS*3 FNMLT(XsY)

Notice that FNMLT is defined with arguments A,B, but that when
the function is called in line 30, variables X and Y are used. Any
two valid variable names can be used to pass values to the function.

DEF FNR{ASB) = A+INT((B-{A-1))*RND{(@)) Returns a random
number between

A and B.

DEF FNLES(A%) = LEFT$(A%$s8) Returns first 8
characters of string
argument

DEF FNX#(A#:BH) = (AR-BH)*(AH-B#) Returns double-

precision value of “the
square of the

difference”
106 - PROGRAM: STRING
118 7 EXAMPLE OF A STRING DEFFN FUNCTION
b
1@ #xxexar FUNCTION TO CONCATENATE STRINGE *sxxxxsx
135

140 DEF FNADD$ (A%s B$) = A$ + * " + E$

15@ CLS: PRINT TAB(15)3 "STRING DEFFN EXAMPLE"
168 PRINT: F$ = "": INPUT "ENTER FIRST NAME"; F4
165 IF F$ = "* THEN END

17@ INPUT *"ENTER LAST NAME": L%

180

198 ° #%xxxx% ADD F$ TO L$ WITH 1 ELANK IN BETWEEN *=x¥xxx
zea -’

210 7% = FNADD® (F%s L$)

220 PRINT TAB(S6)3 "FULL NAME: "3 I%

238 GOTO 16@

STRING DEFFH EXAMPLE

ENTER FIRST NAME? JORN ENIED
ENTER LAST NAME? DOE ENED
FULL NAME: JOHN DOE

DISK BASIC

ilaa - FROGRAM: MINMAX
116 - EXAMPLE OF DEFFH FEATURE

138 7 ki DEFINE MIN AND MAX FUNCTIONS #eksckssor

1492 DEF FNMIN <A, B

(A + B - ABS (A - B /2
156 DEF FNMAX <A, B 2

(H+B+HABS (R - B /

166

178 7 ket READ 1ST YALUE - CALL IT THE MIN AND MAK okdorx
186 - MN 15 CURRENT MINIMUM YALLE

i%a - Me IS CURRENT MAXKIMUM YALUE

208 -

218 READ MMN: MX = MN

228

238 7 sekkksk GET NEXT WALUE AND FIND NEW MINAHMAX sk
248 7

258 READ V: IF Y = 99999 THEN 228 “V=9939% MEANS ALL DONE
268 MN = FNMIMN (MN. V> “GET NEW MINIMUM

278 MY = FNMAX (MH, V> “GET HEW MAXIMUM

228 GOTO 25@

AR 7 dtckdebok PRINT RESULTS sebdopsodok

228 PRINT "MINIMUM YALUE =", MN
23E PRINT "MAXIMUM YALUE =". Mx

346

356 ¢ #ksakrk DATA FOLLOWS - LAST VALUE MUST BE 99999 ko
60 ¢

7@ DATA 1.2, 2, 3 4.7, 5.332, @.314, 6 7, 83, 9. 57, 99999

MINIMUM YALUE
MAZIMUM YALUE

RERD

>RUN EE)
MINIMUM YALUE
MAXIMUM YALUE
READY

b

7-15

DISK BASIC

DEFUSR
(define entry address for USR routine)

DEFUSRn=nmexp

where n equals one of the digits 0,1,....9;
if n is omitted, O is assumed
nmexp specifies the entry address to a
machine-language routine.

This statement lets you define the entry points for up to 10 machine-
language routines. (In LEVEL II, where only one USR routine is
available, the entry point address is POKEd into RAM.)

Example:
188 DEFUSR2=&H7D@B

Assigns the entry point 7D00 hex, 32000 decimal, to the USR3 call.
When your program calls USR3, control will branch to your sub-
routine beginning at hex 7D00.

Here are three ways to get a machine language program into RAM so
that it can be accessed via a USRn call:

1) Use the TRS-80 Editor Assembler, Radio Shack Catalog
Number 26-2002, to convert the source code into an object
file on tape; then load the tape under the SYSTEM
command (use MEMORY SIZE to protect the code from
destruction by BASIC).

2) Use the TRSDOS DEBUG program to type in the machine-
code routine (then DUMP it to disk for safe-keeping);
call DISK BASIC and answer MEMORY SIZE so as to
protect the routine.

3) Have your DISK BASIC routine POKE the routine (decimal
values for each byte) into high RAM. MEMORY SIZE
should be set during initialization to protect the area you
will POKE into.

See USRn.

7-16

DISK BASIC

INSTR (string search function)

INSTR([n,]expl$.exp2§)

where n specifies a position in expl$ where the
search is to begin; if n is not supplied,
1 is assumed. (Position | is defined as
the first character in the string.)
expl$ is the string to be searched
exp2$ is the substring you want to search for

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise zero is returned. Note that
the entire substring must be contained in the search string, or zero

is returned. Also note that INSTR only finds the first occurrence of
a substring, starting at the position you specify.

Examples (let A$=""ABCDEFG"):

Expression Result

INSTR(AS,“BCD")
INSTR(AS,”“12")
INSTR(AS,”ABCDEFGH")
INSTR(3,1232123",12")

bt OO

See the EDIT program under MID$= for a sample use of INSTR.

717

DISK BASIC

LINE INPUT (input a line from keyboard)

LINE INPUT[“prompt"] yar$

where prompt is a prompting message

varg is the name that will be assigned to the line you
type in

LINE INPUT (or LINEINPUT - the space is optional) is similar to
INPUT, except:

* When the statement is executed, and the Computer is waiting for
keyboard input, no question mark is displayed

Each LINE INPUT statement can assign a value to just one variable
Commas and quotes will be accepted as part of the string input
Leading blanks are not ignored — they become part of var$

The only way to terminate the string input is to press

LINE INPUT is a convenient way to input string data without having
to worry about accidental entry of delimiters — because only the

key serves as a delimiter. If you want anyone to be able to
input information to a program without special instructions, use
LINE INPUT and then analyze the resultant string.

Some situations require that you input commas, quotes and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:

LINE INPUT A$
Input AS without displaying any prompt.

LINE INPUT"LAST NAME, FIRST NAME?"; N$
Displays a prompt message and inputs data. Commas will not termi-
nate the input string.

Try the following program to get the idea of LINE INPUT.

i@@ - PROGRAM: LNINPUT
118 “ EXAMPLE OF LINEINPUT STATEMENT
128 -

136 CLEAR 2@6: CLS
148 PRINT TAB(15>; "LINE INPUT STRTEMENT": PRINT
158 PRINT: PRINT "siesk ENTER TEXT dokk"

151 7

152 7 #kk GET STRING, THEM PRINT IT seder
152 7

155 A$="" ‘SET A% TO NULL STRING

7-18

DISK BASIC

1668 LINEINPUT "==3 "; A%

165 IF A$="" THEN END “IF STILL NULL STRING. STOF!
178 PRINT A%

18@ GOTO 4155

LINE INFUT STATEMENT

sorck ENTER TEXT shokok

EXAMFLE TEXT
THIS TEXT HAS EMBEDDED LINE FEEDS AND TABS
IN IT. LINEINPUT ALSO ALLOWS DELIMITER ¢, :; "7 ETC).
==
RERDY
b B

MID$= (replace portion of string)

MID$(var$,ni[,n2])=exp$

where ygr$ names the string to be changed
nl specifies the starting position for the
replacement
n2 specifies how many characters are to be
replaced; if n2 is omitted, LEN(exp$) or
LEN(var8)-ni+1 is used, whichever is
smaller.

This statement lets you replace any part of a string with a specified
substring, giving you a powerful string-editing capability.

Note that the length of the target string (var$) is never changed by
the MID$= statement. If the replacement string, exp$, is too long
to fit in the specified portion of var$, then the extra characters at
the right of exp$ are ignored.

7-19

DISK BASIC

However, if you specify the number of characters to be replaced,
and this number is larger than the replacement string, then the
length of the replacement string overrides the length you specified.

A$="ABCDEFG" at the beginning of each example below:

Ex. # Expression Resultant A%
1 MIDS$(AS$,3,4)=""12345" AB1234G
2 MIDS$(AS,1,2)="" ABCDEFG
3 MIDS$(AS,5)="12345" ABCDI123
4 MIDS(AS$,5)="01" ABCDO1G
5 MIDS$(AS,1,3)=""***" ***DEFG

In example 2, the specified replacement length exceeds the length
of the replacement string (which is zero); therefore the replacement-
string length is used. In effect, no characters are replaced.

Sample program: EDIT
This program accepts an initial string, asks for a replacement position

and a replacement string. Then it performs the MID$= replacement
and prints the new string. Type in a position equal to zero to stop

the program.
1688 “ PROGRAM: EDIT
118 7 EXAMPLE OF INSTR FUNCTION FOR TEXT EDITTING
145 “

128 CLERR 8@8: CLS

128 PRINT TRBC(13); " STRING-FUNCTION EDITOR"
135 7

148 7 skrsolor GET INITIAL TEXT ekl

145 ~

158 PRINT: PRINT "ENTER INITIAL TEXT STRING"
168 S$="": LINE INPUT S$: IF S$="" THEN END

163

178 7 sdokorrk GET TARGET & REPLACEMENT STRINGS sokkokodok
175 7

188 T$="": PRINT: LINE INPUT" TARGET STRING "; T#

185 IF T$="" THEN END

198 LINE INPUT "REPLACEMENT STRING "; R$

195 IF LENCT$)OLENCR$)THEN PRINT"CAN‘T CHANGE STRING LENGTH":
GOTO 1&8

288 7 sekkkiokr MAKE REPLACEMENTC(S) AND PRINT NEW STRING sk

218 I=1 ‘VARIABLE I POSITIONS TO BEGINNING POINT OF SEARCH

228 I=INSTRCI. S%, T$): IF I=0 THEN 158 “I=8 IF NOT FOUND

238 MID$(S$, I)=R$ “MAKE REPLACEMENT

24@ PRINT "POSITION - "; I: PRINT S$

258 I=I+LENCR$): GOTO 228 “ADVANCE POSITION

7-20

DISK BASIC

STRING-FUNCTION EDITOR

ENTER INITIAL TEXT B

TARGET STRING DISC EED
REPLACEMENT STRING DISK N
POSITION - 9

CHANGE “"DISK" TO "DISK" EACH TIME IT OCCURS... (DISC=>DISK)
POSITION - 48

CHANGE "DISK" TO "DISK" ERCH TIME IT OCCURS. .. (DISK=>DISK)

ENTER INITIAL TEXT STRING

RERDY
>-

NAME (renumber a BASIC program — BASICR only)

NAME [newline] [,[startline] [,increment]]

where newline specifies the new line number

of the first line to be renumbered.
If newline is omitted, the line
number 10 is used.

startline specifies the line number in
the original program where you want to
start renumbering. If startline is
omitted, the entire program will be
renumbered.

increment specifies the increment to be
used between each successive
renumbered line. If increment is
omitted, 10 is used.

This is an addition to the set of BASIC commands. It is only
available under BASICR, not BASIC. NAME lets you renumber all
or part of the resident BASIC program,

7-21

DISK BASIC

NAME changes all line numbers in the specified range, as well as
all line number references appearing after GOTO, GOSUM, THEN,
ON...GOTO, ON... GOSUB, ON ERROR GOTO, and ERL
(relational operator).

NOTE: NAME will add trailing blanks to line number references
which contain less than 5 digits. These blanks will not accumulate
during subsequent renumbering operations on the same program.

Examples:

NAME

Renumbers the entire resident program, starting with new line number
10, and incrementing by 10’s.

NAME 602005000, 100

Renumbers all lines numbered from 5000 up; the first renumbered
line will become 6000, and an increment of 100 will be used between
subsequent lines.

NAME 10200, 1000

Renumbers line 1000 (if present) and all higher-numbered lines; the
first renumbered line will become line 10000, and an increment of 10
will be used between subsequent line numbers,

NAME 122,100

Renumbers the entire program, starting with new line number 100,
and incrementing by 100’s.

NAME s + 5

Renumbers the entire program, starting with new line number 10
and incrementing by 5s,

Error Conditions:

1. NAME cannot be used to change the order of program lines.
For example, if the original program has lines numbered 10,
20 and 30, then the command:

NAME 1530

is illegal, since the result would be to move the second line of
the program ahead of the first. In this case, an ILLEGAL
FUNCTION CALL error will result, and the original program
will be left unchanged.

7-22

DISK BASIC

2. NAME will not create new line numbers greater than 65529.
Instead, an ILLEGAL FUNCTION CALL will result, and the
original program will be left unchanged.

3. If an undefined line number is used inside your original
program, NAME will print a warning message, UNDEFINED
LINE xxxx IN yyyy, where xxxx is the original line number
reference and yyyy is the original number of the line
containing XxXXX.

Note that NAME will renumber the program in spite of this
warning message. It will replace the number xxxx with 5
blanks, and will renumber yyyy, according to the parameters
in your NAME command.

For example, if your original program includes the line,

118 GOTO 1006
but does NOT include a line 1000, then NAME will print a
warning,

UNDEFINED 100G IN 110
and renumber the program. The text of original line 110 will
be changed to:

GOTO five blanks here
TIMES (get value of Real-Time Clock)
TIMES$

TIMES is a function with no arguments — when executed, it returns
a string-value composed of the date and time currently stored in the
Real-Time Clock memory area. The string is always 17 characters
long and has the following format:

MM/DD/YYWPHH:MM:SS (month/day/year hr:min:sec)
The hour appears in 24-hour form, e.g., 1:30 PM appears as 13:30.

To set the time and date, get into the DOS READY mode and use
the TRSDOS commands, TIME and DATE, as follows (assume it’s

3:30 PM on January 1, 1979):

TIME 15:30:68
DATE @1/01/79

Or, you can set the time and date under DISK BASIC, by POKEing

the time and date values into the appropriate addresses (see
CLOCK, TRSDOS Library Commands).

TIMES can be printed or used internally by your program in dedicated
applications.

7-23

DISK BASIC

Examples:

18008 IF LEFT$(TIMES, 15)="87/84/79 20:08"THEN 2000

1016 GOTO 1000
2000 REM... 1T/S 8PM ON JULY 4TH. 1979
2016 REM. .. START FIREWORKS DISPLAY

The following program, CLOCK, will display the time and date until
you press the @-key.

168 ¢ PROGRAM: CLOCK

118 - EXAMPLE OF TIMES$

128 -

13@ CLS: PRINT CHR$ <23) “GET INTO 32 CHARACTER MODE
148 7

1568 ¢ #dordordor PRINT TIME AND DATE sedekdokdor

160 7

178 PRINT @ 264, "THE TRS-8@ TIME 15%:

188 PRINT @ 458, "DATE: "; LEFT$ (TIMES, 8);

198 PRINT @ 586, "TIME: "; RIGHT$ (TIMES, 8);

288 7

218 ¢ sekkiokkk STOP IF "@" KEY IS DEPRESSED ekdotokdok
228

230 A$=INKEY$: IF A$ = "@" THEN END ELSE 180

USRn (call to user’s external subroutine)

USR[n] (nmexp)
where n specifies one of ten available USR calls,
n=0,1,2,...,9. If n is omitted, zero is
assumed.

nmexp is in the range < -32768 +32767> and
is passed as an integer argument to the
routine

These functions (USRO through USR9) transfer control to machine-
language routines previously defined with DEFUSR#n statements.

When a USR call is encountered in a statement, control goes to the
address specified in the DEFUSRn statement. This address specifies
the entry point to your machine-language routine. A RET or JP
0A9A instruction in the routine returns control to the USR call in
your BASIC program.

7-24

DISK BASIC
R e e =i TR e S F T e e e

Note: If you call a USRn routine before defining the routine entry
point with DEFUSR#n, an ILLEGAL FUNCTION CALL error will

occur.

You can pass one argument and retrieve one output value directly
via the USR argument; or you can pass and retrieve arguments
indirectly via POKE and PEEK statements.

Example:

18 DEFUSR1=&H7D@@
28 REM. .. MORE PROGRAM LINES HERE
16@ A=USR1(X)

The effect of this sequence is to:

1) Define USRI as a routine with an entry point at hex 7D00
(line 10)

2) Transfer control to the routine; the value X can be passed
to the routine if the routine makes the CALL described
below (line 100)

3) When the routine returns to BASIC, the variable A may
contain the value passed back from the routine (if your
routine makes the JUMP described below); otherwise A
will be assigned the value of X (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between
your BASIC main program and your USR routines: the two major
ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The
machine-language routine can then access these values and
place results in other RAM locations. When the routine
returns control to BASIC, your program can PEEK into
these addresses to pick up the “output” values. This is
the only way to pass two or more arguments back and
forth.

2. Pass one argument to the routine as the argument in the
USRn call, then use special ROM calls to access this
argument and return a value to BASIC. This method is
limited to sending one argument and returning one value
(both are integers).

7-25

DISK BASIC

ROM Calls

CALL OA7FH Puts the USR argument into the HL register pair;
H contains msb, L contains Isb. This CALL should
be the first instruction in your USR routine.

JP 0ASAH Use this JUMP to return to BASIC; the integer in
HL becomes the output of the USR call. If you
don’t care about returning HL, then execute a
simple RETurn instruction instead of this JUMP,

Examples:

Listed below is an assembled machine-language routine that will
accept the argument from the USR call in BASIC, left-shift it one
position, and return the result to BASIC.

90166 ;
88116 ; SHIFT FUNCTION
Ba1z2a ;
ee1za ; MACHINE CODE PROGRAM TO LEFT SHIFT
ae14a ; AN ARGUMENT SENT FROM BASIC AND RETURN
B@156 ; THE RESULT BACK TO BRSIC
88168 ;
7DBa 80170 ORG 7DEeH
#6188 ;
88190 ; EQUATES AND ENTRY POINTS
86200 ;
BA7F Be216 GETARG EQU BA7FH ; GET ARGUMENT FROM BRSIC
BA%A 86226 PUTANS EQU BASAH ; RETURN ANSHER TO BASIC
Be22e ;
7De@ CD7FBA @@248 SHIFT CALL GETARG ; GET NUMBER FROM BRSIC
7Daz CBiS 8825a RL L s SHIFT L
7085 CBi4 88260 RL H ;SHIFT H - ANSWER IN HL
7DB7 C29ABR B@276 JP PUTANS ;RETURN TO BARSIC MW/ ANSHER
B@z8a8 ;
7Doa 88290 END SHIFT

The following program includes the decimal code for the SHIFT
routine. The code is POKEd into RAM and then accessed as a USR
routine. RUN the program; to stop, enter a value of zero.

Note: The following two BASIC programs require that you reserve
memory addresses above 31999 for the USR Code. (Answer MEMORY
SIZE? with 31999.)

7-26

DISK BASIC

ige - PROGRAM: SHIFT

118 MACHINE LANGUAGE USER FUCTION TO LEFT SHIFT
128 -

138 7 sekdelertok MACHINE CODE AT 7088 HEX sedoksoor

148 -

158 DEFUSRS = &HVDGA

166 ~ -

178 7 skkkdkk POKE USER PROGRAM INTO MEMORY sokdoksokok
180 -

196 FOR ¥ = 32608 TO 22889 ‘7DB@ HEX EQUALS 22688 DECIMAL
268 REARD A

218 POKE X. A

228 NEXT X

238 7

248 7 skkdorik GET VYALUE FROM USER sedetokorokok

25 ¢

268 CLS: PRINT TAB(1S)>; "USRS LEFT-SHIFT FUNCTION"

278 PRINT: INPUT"ENTER INTEGER VALUE"; V

286 IF Y=8 THEN END

298 PRINT "LEFT SHIFTED VALUE = "; TRAB(22)>; USR3(Y)

%88 GOTO 278

24a -

2280 7 skt DATA IS DEMICAL CODE FOR HEX PROGRAM #dkokksdokk
23A

4@ DATA 285,127,416, 263, 21, 263, 28, 195, 154, 18

ENTER

USRS LEFT-SHIFT FUNCTION

ENTER INTEGER VALUE? 2
LEFT SHIFTED YALUE = 14

ENTER INTEGER vALUE? #2 ENED
LEFT SHIFTED VALUE =

ENTER INTEGER YRLUE? 3
LEFT SHIFTED VALUE =

ENTER INTEGER YALUE? @
READY

7-27

DISK BASIC

Listed below is an assembled program to white out the display (an
“inverse” CLEAR key!).

7Daa

3000
GOBF
@3FF

D88 21882C
7DB2 Z6BF
7DB3 116843=C
7Da3 BiFFEz
7DoB EDB@

vbap Co
7Doe

aal1ee
Be116
ea126
@120
88140
868150

a816a ;

8a17@
@a12a
80190
eoze0
88218
88220
86220
88248
ag256
28268
80278
88280
88298
808200

i ZAF OUT SCREEN USR FUNCTION
ORG 7D8aH
; EQURTES
VIDEOD EQU 2CeeH i START OF YIDEO RAM
WHITE EQU @BFH i ALL WHITE GRAPHICS BYTE
COUNT EQU 3FFH i NUMBER OF BYTES TO MOVE
; PROGRAM CHRIN MOVES X“BF“ INTO ALL OF YIDEO RAM
ZARF LD HL. YIDED i SOURE RDDRESS
LD (HL)>. HHITE i PUT OUT 15T BYTE
LD DE. VIDEO+1 ; DESTINARTION ADDRESS
LD BC, COUNT i NUMBER OF ITERATIONS
LDIR ;DO IT TO IT!!!
RET i RETURN TO BRSIC
END ZAP

This routine can be POKEd into RAM and accessed as a USR

routine, as follows.

7-28

DISK BASIC

166
116
115
12@
1za
148
156
1ea
i70
188
196
192
194
196
2ea
205
218
2268
225
228
248
258
268
278
280
290
208
210
328
328

PROGRAM: USR1
EXAMPLE OF A USER MACHINE LANGUAGE FUNCTION
DEFRESS THE ‘@7 KEY WHILE NUMBERS ARE PRINTING TO STOP

#oikoolok POKE MACHINE PROGRAM INTO MEMORY sookdor

= &H?7D@a
32008 TO 22812 ‘7DB@ HEX EQUAL 226808 DECIMAL

IO v % % N NN
m
M
s
A

7 kdoloktok CLEAR SCREEN & PRINT NUMBERS 1 THRU 186 sokcksdokakok

Pl

CLS
PRINT TAB(15); "WHITE-OUT USER ROUTINE": PRINT
FOR ¥ = 1 TO 166

PRINT ¥;
A% = INKEY$: IF A$ = "@" THEN END
NEXT ¥
4 dekskokdokdk JUMP TO WHITE-OUT SUBROUTINE seokcteksokok
¥ = USR1 (@)
FOR ¥ = 41 TO 1868@: NEXT ¥ “DELAY LOOP
GOTO 208
7 #ekpokdedk DATA IS DEMICAL CODE FOR HEX PROGRAM ok

s

DRTA 22, 8. 68, 54, 235, 17, 1, 68, 1, 255, 3, 237, 176, 201

RUN the program. An equivalent BASIC white out routine takes
a long time by comparison!

7-29

DISK BASIC

Disk-Related Features

DISK BASIC provides a powerful set of commands, statements and
‘functions relating to disk I/O under TRSDOS. These fall into two
categories:

1. File manipulation: dealing with files as units, rather than
with the distinct records the files contain.

2. File access: preparing data files for I/O; reading and
writing to the files.

Commands discussed under “File Manipulation™:

KILL delete a program or data file
from the disk

LOAD load a BASIC program from disk

MERGE merge an ASCII-format BASIC

program on disk with one
currently in RAM
RUN*“program” load and execute a BASIC
program stored on disk
SAVE save the resident BASIC program
on disk

8l

DISK BASIC

Statement and functions discussed under “File Access™:

Statements

OPEN Open a file for access (create the
file if necessary)

CLOSE Close access to the file

INPUT # Read from disk, sequential mode

LINE INPUT# Read a line of data, sequential
mode

PRINT # Write to disk, sequential mode

GET Read from disk, random access
mode

PUT Write to disk, random access
mode

FIELD Assign field sizes and names to
random access file buffer

LSET Place value in specified buffer

field, add blanks on the right
to fill field

RSET Place value in specified buffer
field, add blanks on the left
to fill field

Functions

CVD Restore double-precision number
to numeric form after GETting
from disk

CVI Restore integer to numeric form
after GETting from disk

CVsS Restore single-precision number
to numeric form after
GETting from disk

EOF Check to see if end of file
encounfered during read

LOF Return number of last record in
file

MKD$ Convert double-precision number
to string so it can be PUT
on disk

MKI$ Convert integer to string so it can
be PUT on disk

MKS$ Convert single-precision number
to string so it can be PUT
on disk

7-31

DISK BASIC

File Manipulation
KILL (delete a file from the disk)

KILL exp$
where epx$ defines a file specification for an existing file

This command works like the TRSDOS KILL command — see
TRSDOS Library Commands.

Example:
KILL"OLDFILE/BAS. PSW1
deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the
diskette. (First CLOSE the open file.)

LOAD (load BASIC program file from disk)

LOAD exp$ [,R]

where exp$ defines a filespec for a BASIC program file stored
on disk

R tells BASIC to RUN the program after it is
loaded

This command loads a BASIC program file into RAM; if the R
option is used, BASIC will proceed to RUN the program
automatically; otherwise, BASIC will return to the command
mode.

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and closes all open files. LOAD with the R
option deletes the resident program and clears all variables, but does
not close the open files.

LOAD with the R option is equivalent to the command RUN exp3,R.
Either of these commands can be used inside programs to allow
program chaining — one program calling another, etc.

If you attempt to LOAD a non-BASIC file, a DIRECT STATEMENT
IN FILE or LOAD FORMAT ERROR will occur.

7-32

DISK BASIC

Examples:

LOADPROG1/BAS:2" Clears resident BASIC program and
loads PROG1/BAS from drive 2;
returns to BASIC command mode.

10 REM...INSTRUCTIONS Example of chaining two programs
— the first may be used to give
instructions and then to load the

“working” part of the program
1000 LOAD“PROG2/BAS”,R (PROG2/BAS). Note that line

1000 is equivalent to:
1000 RUN”PROG2/BAS"”’

MERGE
(merge disk program with resident program)
MERGE exp$

where exp$ defines a filespec for an ASCII-format BASIC
disk file, e.g., a program saved with the
A-option.

MERGE is similar to LOAD — except that the resident program is
not wiped out before the new program exp$ is loaded. Instead,
exp$ is merged into the resident program.

That is, program lines in exp$ will simply be inserted into the
resident program in sequential order. If line numbers in exp3
coincide with line numbers in the resident program, the resident lines
will be replaced by those from exp$§.

PROGRAM IN DISK PROGRAM IN RAM MERGED PROGRAM IN RAM

10
20

PROGRAM LINE NUMBERS '

3(8|8)|8(8

7-33

DISK BASIC

MERGE provides a convenient means of putting modular programs
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

For example, suppose the following program is in RAM:

18 REM. .. MAIN PROGRAM

28 GOSUB 1000

30 REM. .. MORE PROGRAM LINES HERE

999 END

1688 REM. .. NEED TO ADD SUBROUTINES HERE
16410 REM. .. S0 USE MERGE COMMAND

1626 PRINT"SUBROUTINE NOT AVRILABLE" :RETURN

And suppose the following program is stored on disk in ASCII format:

1600 REM... BEGINNING OF SUBROUTINE
1618 PRINT"EXECUTING SUBROUTINE..."
1626 REM. . . MORE PROGRAM LINES HERE
1166 RETURN

Assuming the subroutine program is named SUB/TXT, then we
could MERGE it with the statement:
MERGE"SUB/TXT"

and the resultant program in RAM would be:

16 REM. .. MAIN PROGRAM

28 GOSUB 1088

38 REM. .. MORE PROGRAM LINES HERE
999 END

1600 REM. .. BEGINNING OF SUBROUTINE
1010 PRINT"EXECUTING SUBROUTINE. .. "
1626 REM. .. MORE PROGRAM LINES HERE
1166 RETURN

Note that MERGE closes all files and clears all variables. Upon
completion, BASIC returns to the command mode.

7-34

DISK BASIC

RUN*program”

(load and execute a program from disk)

RUN exp$ [,R]

where exp3 defines the filespec for a BASIC program
stored on disk. R leaves open files open

If the R-option is not selected, all open files will be closed.

When the command is executed, any resident BASIC program will
be replaced by the program contained in exp$.

Example:
RUN"DISKDUMP/BAS" LI
Loads and executes the BASIC sector-dump program.

Suppose you save the following program on disk with the name
“PROGI1/BAS":

16 PRINT"PROGL EXECUTING... "
28 RUN"PROGZ/BRS"

And save this program on disk with the name “PROG2/BAS":

18 PRINT"PROGZ EXECUTING..."
28 RUN"PROG1/BRS"

Now type:

RUN"PROG1/BRS
and you’ll see a simple example of program chaining.
Hold down the BREAK key to interrupt the program chain.

SAVE (save program onto disk)

SAVE exp$ [,A]

where exp$ defines the file-name and optional
extension, password, and drive to be used.
If the file-name already exists, its previous
contents will be lost as the file is re-created.

A causes the file to be stored in ASCII rather
than compressed-format.

This command lets you save your BASIC programs on disk. You can
save the program in compressed or ASCII format.

e R o N e T L e [T e T T, P S T B

7-35

DISK BASIC

Using compressed-format takes up less disk space and is faster during
both SAVEs and LOADs. This is the way BASIC programs are
stored in RAM.

Using the ASCII option makes it possible to do certain things that
cannot be done with compressed-format BASIC files.

Examples:

e The MERGE command requires that the disk file be in
ASCII form.

®* You can use the TRSDOS commands LIST and PRINT with

ASClI-format files.

Programs which read in other programs as data will typically

require that the data programs be stored in ASCIL.

Useful conventions for placing extensions on BASIC programs:
For compressed-format programs, use the extension /BAS.
For ASCII format programs, use the extension /TXT.

Examples of SAVE command:

SAVE"FILEA/BRS. JOHNGDOE : 3"

saves the resident BASIC program in compressed-format with the
file name FILE1, extension /BAS, password .JOHNQDOE; the
file is placed on drive :3.

SAVE"MATHPAK/TXT". A
saves the resident program in ASCII form, using the name
MATHPAK/TXT, on the first non write-protected drive.

Upon completion of a SAVE, BASIC returns in the command mode.

7-36

DISK BASIC

File Access

This section is divided into four parts:

1) Creating files and assigning buffers — OPEN and CLOSE
2) Statements and functions

3) Sequential 1/O techniques

4) Random I/O techniques.

If this is your first experience with disk file access, you should
concentrate on parts 1, 3 and 4, perhaps just skimming through
part 2 to get a general idea of how the functions and statements
work. Later you can go back to part 2 and learn the details of
statement and function syntax.

Creating files and assigning buffers

During the initialization dialog, you type in a number in response to
HOW MANY FILES? The number you type in tells BASIC how
many buffers to create to handle your disk accesses (reads and
writes).

Each buffer is given a number from 1 to 15. If you type:
HOW MANY FILES? &
then BASIC sets aside four buffers, numbered 1,2,3 and 4.

You can think of a buffer as a waiting area that data must pass
through on the way to and from the disk file. When you want to
access a particular file, you must tell BASIC which buffer to use
in accessing that file. You must also tell BASIC what kind of
access you want — sequential output, sequential input, or random
input/output.

All this is done with the OPEN statement, and “undone” with the
CLOSE statement.

7-37

DISK BASIC

OPEN
(Assign a buffer to a file and set mode)

B OPEN expl $,nmexp,exp2$

where expl$ is a string expression or constant of which
only the first character is significant; this
character specifies the mode in which the
file is to be opened:

expl$= access mode

I sequential input
0 sequential output
R random I/0O

nmexp has a value from 1 to 15, and tells BASIC
which buffer to assign to the file specified
by exp2$

exp28 defines a TRSDOS file specification

This statement makes it possible to access a file. expl§ determines
what kind of access you’ll have via the specified buffer; nmexp
determines which buffer will be assigned to the file; and exp2$ names
the file to be accessed. 1f exp28 does not exist, then TRSDOS may
or may not create it, depending on the access mode.

Note: nmexp (buffer number) cannot exceed the number you
entered for the FILES? question during initialization. If you
entered:

HOW MANY FILES? @ [V
then nmexp can have the value 1 or 2.

Examples of OPEN statements:
10@ OPEN "0", 1, "CLIENTLS/TXT"

Opens the file “CLIENTLS/TXT" for sequential output. Buffer 1
will be used. If the file does not exist, it will be created. If it already
exists, then its previous contents are lost. (This is explained under
“Sequential 1/O Techniques™.)

108 OPEN "I",4, "PROGL/TXT:1"

Opens the file “PROG1/TXT" on drive 1 for sequential input. Buffer
2 is assigned to the file. If PROG1/TXT does not exist on drive 1, an

error message is returned — since you can’t input from a non-existent
file!

7-38

DISK BASIC

168 INPUT"MODE (I.0,R>"; MODE$

118 INPUT"BUFFER NUMBER"; BUFFERY

120 INPUT"FILE SPECIFICATION"; FILESPECS
138 OPEN MODES®, BUFFERY, FILESPECS

This sequence of statements lets you provide the arguments for the
OPEN statement during program execution. The first character of
MODES sets the access mode, BUFFER% determines which buffer
will be used, and FILESPECS gives the file specification.

OPEN"R", 2, "DATA/BAS. SPECIAL"

Opens the file DATA/BAS with password SPECIAL, in the random
I/O mode, using buffer number 2. If DATA/BAS does not exist,
it will be created on the first non write-protected drive.

While a file is open, it is referenced by the buffer-number which was
assigned to it. Examples:

GET buffer-number
PUT buffer-number
PRINT #buffer-number
INPUT #buffer-number

All these statements will reference the file which was OPENed via
buffer-number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement,
that buffer cannot be used in another OPEN statement. You have
to CLOSE it first.

More on Buffer Assignments

Two or more buffers may be assigned to the same file for sequential
input (I-mode). However, only one buffer at a time may be assigned
to a file for sequential output (O-mode) or random access R-mode.

For example:

1@ OPEN "I",1, "TEST/TXT:1"
28 OPEN "I",2, "TEST/TXT:1"

Now TEST/TXT can be accessed via buffers 1 and 2 for sequential
input.
Do not leave disk files Open longer than you have to. This is

because the disk files are especially vulnerable to Power failures
and voltage transients, accidental removal of diskettes, etc.

For example, it is NOT good practice to Open a file at the beginning
of a program, and leave it open until the end of the program. Instead,
you should Open the file when you are ready to read or write the
data, and Close the file when you’ve finished.

7-39

DISK BASIC

CLOSE (close access to the file)

CLOSE [nmexp [,nmexp...]]

where nmexp has a value from 1 to 15, and refers to the
file’s buffer-number (assigned when the
file was opened). If nmexp is omitted, all
open files will be closed.

This command terminates access to a file through the specified
buffer(s). If nmexp has not been assigned in a previous OPEN
statement, then

CLOSE nmexp

has no effect.
Examples of CLOSE statements:
CLOSE 1,2.8

Terminates the file assignments to buffers 1, 2 and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTA+COUNTZ

Terminates the file assignment to the buffer specified by the sum
(FIRST% + COUNT%).

Do not remove a diskette which contains an open file — first close
the file. This is because the last 256 bytes of data may not have
been written to disk yet. Closing the file will write the data, if it
hasn’t already been written.

The following actions and conditions cause all files to be
automatically closed:

NEW

RUN

MERGE filespec

EDITing a file

Adding or deleting program lines
Execution of the CLEAR n statement
Disk Errors

7-40

DISK BASIC

INPUT# (sequential read from disk)

INPUT # nmexp, var|var...]

where nmexp specifies a sequential input file
buffer, nmexp=1,2,...,15

var is the variable name to contain
the data from the file

This statement inputs data from a disk file. The data is input
sequentially. That is, when the file is first opened, a pointer is set
to the beginning of the file. Each time data is input, the pointer
advances. To start over reading from the beginning of the file, you
must close the file-buffer and re-open it.

INPUT# doesn’t care how the data was placed on the disk — whether
a single PRINT# statement put it there, or whether it required 10
different PRINT# statements. What matters to INPUT# are the
positions of the terminating characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of
time what the format of the data is. Here is a description of how
INPUT # interprets the various characters it encounters when reading
data.

When inputting data into a variable, BASIC ignores leading blanks;
when the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The particular terminating
characters vary, depending on whether BASIC is inputting to a
numeric or string variable.

7-41

DISK BASIC
[S N TR PR L P s T Y il I, S A BT ¥ <, U T T S W T e

Numeric Input

Suppose the data image on disk is
$1.234p-33pp27p <EN>
<EN?> denotes a carriage-return character (ASCII code decimal 13).

Then the statement

INPUT#L, A.B.C
or the sequence of statements

INPUT#4. A: INPUT#1.B: INPUT#4,C
will assign the values as follows:

A=1.2345
B=-33
C=27

This works because blanks and < EN > serve as terminators for
input to numeric variables. The blank before 1.2345 is a “leading
blank™, therefore it is ignored. The blank after 1.2345is a
terminator; therefore BASIC starts inputting the second variable at
the — character, inputs the number —33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends
with the 7.

DISK BASIC

String Input

When reading data into a string variable, INPUT ignores all leading
blanks; the first non-blank character is taken as the beginning of the
data item.

If this first character is a double-quote (**), then INPUT will evaluate
the data as a quoted string: it will read in all subsequent characters
up to the next double-quote. Commas, blanks, and <EN?>
—characters will be included in the string. The quotes themselves

do not become a part of the string.

If the first character of the string item is not a double-quote, then
INPUT will evaluate the data as an unquoted string: It will read in
all subsequent characters up to the first comma, or <EN> .

If double quotes are encountered, they will be included in the string.

For example, if the data on disk is:
PECOS,PTEXAS “GOOD MELONS"”
Then the statement
INFUT#1, A$.B$.C$
would assign values as follows:

AS=PECOS
B$=pTEXAS “GOODPMELONS"
C$= null string

If a comma is inserted in the data image before the first double quote,
C$ will get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how
INPUT works. However, there are many other ways to input data —
different terminators, different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all,
we’ll give a generalized description of how input works and what
the terminating characters and conditions are, and then provide
several examples.

When BASIC encounters a terminating character, it scans ahead to
see how many more terminating characters it can include with the
first terminator. This ensures that BASIC will begin looking for the
next data item at the correct place.

The list below defines the various terminating sets INPUT # will
look for. It will always try to take-in the largest set possible.

7-43

DISK BASIC

Numeric-input terminator sets

end of file encountered

255th data character encountered
, (comma)

<EN>

<EN> <LF>

Bl¥ ...1[<EN>]

BB ...1[<EN><LF>]

Quoted-string terminator sets

end of file encountered

255th data character encountered
" (double quote)

.. 0L0]

“Ib...][<EN>]

“[B...][<EN> <LF>]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

<EN> [<LF>]

Here’s a flow chart describing how INPUT # assigns data to a variable:

EXAMINE NEXT NON S5 FUTITINTO EXAMINE NEXT o
Bl iyl TEMPORARY TEAMINATOR?
CHARACTER CHARACTER
SAVE AREA
YES
PICKUP THE
IGNORE IT TERMINATOR
SET
GET DATA FROM R ASSIGN TO
TEMPORARY o [END
SAVE AREA

7-44

DISK BASIC

The following table shows how various data images will be read-in by
the statement:

INPUT#1, R, B, C
Ex.# [Image on disk Values assigned

1 $123.45F < EN><LF> b8.2E4pp7000<EN> A=12345
B=82000
C=7000

) PPB3<LF><EN> 4 <EN>5 <EN> A12eof A=34
B=5
C=0

3 1,234 <EN> A=1
B=0
C=2

4 1,3,end-of-file A=1
B=2

C=0 end of file error

In Example 2 above, why does variable C get the value 07 When the
input reaches the end of file, it terminates the last data item, which
then contains “A12”. This is evaluated by a routine just like the
BASIC VAL function —which returns a zero since the first character
of “A12” is non-numeric.

In Example 3, when INPUT # goes looking for the second data item,
it immediately encounters a terminator (the comma); therefore
variable B is given the value zero.

The following table shows how various data images on disk will be
read by the statement:

INPUT#1, A$. B$
Ex.# Image on disk Values assigned
1 pBB“ROBERTS,]."ROBERTS M.N eof A$=ROBERTS,J.

B$=ROBERTS,M.N.

2 PPBROBERTS,). pPPROBERTS M.N. <EN> A$=ROBERTS
B$=J.

3 THE WORD “QUO™,12345.789 <EN> A$=THE WORD “QUO”
B$§=12345.789

4 BYTE<LF> <END> UNIT OF MEMORY eof A$=BYTE<LF> <EN>> UNIT OF MEMORY
B$=null (eof error)

7-45

DISK BASIC
e e e

In example 3, the first data item is an unquoted string, therefore the
double-quotes are not terminators, and become part of AS.

In example 4, the <EN> is preceded by an <LF >, therefore it
does not terminate the first string; both <LF> and <EN>
are included in AS.

Technical Note: The above discussion ignores the role of the input
buffer in the sequential input process. Actually, DISK BASIC
always reads in 256-byte data records into the buffer, and then sorts
through what’s in the buffer to “satisfy” the INPUT# variable list.
That’s why

160 INPUT#1, AX
2086 INPUTH#1, BZ

do not necessarily require two disk accesses. The 256-byte record
in the buffer can contain enough data for A%, B% and more.

LINE INPUT#
(read a line of text from disk)

LINE INPUT#nmexp,var$
where nmexp specifies a sequential output file buffer,
nmexp=1,2,...,15

var$ is the variable name to contain the string
data

Similar to LINE INPUT from keyboard, this statement reads a
“line” of string data into var$. This is useful when you want to

read an ASCII-format BASIC program file as data, or when you want
to read in data without following the usual restrictions regarding
leading characters and terminators.

LINE INPUT (or LINEINPUT — the space is optional) reads
everything from the first character up to:

1) an <END> character which is not preceded by<LF >

2) the end-of-file

3) the 255th data character (this 255 character is included
in the string)

Other characters encountered — quotes, commas, leading blanks,
<LF> <EN > pairs — are included in the string.

7-48

DISK BASIC

For example, if the data looks like:

10 CLEAR 500 <EN>
20 OPEN “1”,1,"PROG"” <EN>

then the statement
LINEINPUT#1. R$

could be used repetitively to read each program line, one line at a
time.

PRINT# (sequential write to disk file)

PRINT #nmexp,[USING format$;] exp[p exp...]

where nmexp specifies a sequential output file buffer,
nmexp=1,2,...,15

format$ is a sequence of field specifiers used with
the USING option

p is a delimiter placed between every two
expressions to be PRINTed to disk; either
a semi-colon or comma can be used
(semi-colon is preferable)

exp is the expression to be evaluated and
written to disk

This statement writes data sequentially to the specified file. When
you first open a file for sequential output, a pointer is set to the
beginning of the file, therefore your first PRINT# places data at

the beginning of the file. At the end of each PRINT# operation, the
pointer advances, so the values are written in sequence.

A PRINT # statement creates a disk image similar to what a PRINT
to display creates on the screen. Remember this, and you’ll be able
to set up your PRINT # list correctly for access by one or more
INPUT statements.

PRINT# does not compress the data before writing it to disk; it
writes an ASCII-coded image of the data.

747

DISK BASIC

EEameeee e e PR

For example, if A=123.45
PRINT#1, A
will write a nine-byte character sequence onto disk:
$123.45p <EN>
The punctuation in the PRINT list is very important. Unquoted

commas and semi-colons have the same effect as they do in regular
PRINT to display statements.

For example, if A=2300 and B=1.303, then
PRINT#L, A, B
places the data on disk as
$2300pPYpHYPBLYEE1.303p <EN>
The comma between A and B in the PRINT # list causes 10 extra
spaces in the disk file. Generally you wouldn’t want to use up

disk space this way, so you should use semi-colons instead of
commas.

PRINT#4.A; B
writes the data as:

2300 1.303 <EN>

PRINT# with numeric data is quite straightforward — just remember
to separate the items with semi-colons.

PRINT# with string data requires more care, primarily because you
have to insert delimiters so the data can be read back correctly. In
particular, you must separate string items with explicit delimiters
if you want to INPUT# them as distinct strings.
For example, suppose:

A$="JOHN Q. DOE" and B$="100-01-001"
Then:

PRINT#1. A% B%

would produce this image on disk:

7-48

DISK BASIC

JOHN Q. DOE100-01-001 <EN>
which could not be INPUT back into two variables.
The statement:

PRINT#1, R$;:". "
would produce:

JOHN Q. DOE, 100-01-001

which could be INPUT # back into two variables.

This method is adequate if the string data contains no delimiters —
commas or <EN > —characters. But if the data does contain
delimiters or leading blanks that you don’t want to ignore, then you
must supply explicit quotes to be written along with the data.
For example, suppose A$=""DOE, JOHN Q.” B$="100-01-001""
If you use

PRINT#L, A$: ", "
the disk image will be:

DOE, JOHN Q.,100-01-001 <EN>
When you try to input this with a statement like

INPUT#2, RS, B$

AS will get the value “DOE™, and B$ will get “JOHN Q.” — because
of the comma after DOE in the disk image.

To write this data so that it can be input correctly, you must use
the CHRS function to insert explicit double quotes into the disk
image. Since 34 is the decimal ASCII code for double quotes, use
CHR$(34) as follows:

PRINT#1, CHR$(34); A%; CHR$(34); BS
this produces the disk image

“DOE, JOHN Q.”100-01-001 <EN>

which can be read with a simple

INPUT#2, A%, B$

7-49

DISK BASIC

Note: You can also use the CHRS function to insert other delimiters
and control codes into the file, for example:

CHRS$(10) <LF> Line Feed
CHRS$(13) carriage return (< EN >character)
CHRS$(11) or CHR$(12) line-printer top-of-form

USING Option

This option makes it easy to write files in a carefully controlled
format. You could create a report file this way, which then could be
LISTed or PRINTed (TRSDOS commands).

Or you could use this option to control how many characters of a
value are written to disk.

For example, suppose:
A$="LUDWIG"
B$="VAN"
C$="BEETHOVEN"

Then the statement

PRINT#1, USING"'. '. ¥ 4"iA%;B$:C$
would write the data in nickname form:
L.V.BEET <EN>

(In this case, we didn’t want to add any explicit delimiters.) See the
PRINT USING description in the LEVEL II BASIC Reference
Manual for a complete explanation of the field-specifiers.

Technical Note: The above discussion ignores the role of the
output buffer in the sequential write process. Actually, the data is
first placed into the buffer, and then, as 256-byte records are filled,
the data is written to the disk file. That’s why there isn’t always a
disk access during execution of each PRINT# statement.

7-50

DISK BASIC

Random Access Statements

FIELD
(organize a random file-buffer into fields)

FIELD nmexp,nmexpl AS varl$ [,nmexp2 ASvar2§...]

where mmexp specifies a random access file buffer,
nmexp=1,2,...,15
nmexpl specifies the length of the first field,
varl$ defines a variable name for the first field
nmexp2 specifies the length of the second field
var2$ defines a variable name for the second field
: subsequent nmexp AS var$ pairs define
other fields in the buffer

Before FIELDing a buffer, you must use an OPEN statement to
assign that buffer to a particular disk file (must use random access
mode). Then use the FIELD statement to organize a random file
buffer so that you can pass data from BASIC to disk storage and
vice-versa.

Each random file buffer has 256 bytes which can store data for
transfer from disk storage to BASIC or from BASIC to disk.
However, you need a way to access this buffer from BASIC so
that you can either read the data it contains or place new data
in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to
“re-organize” a file buffer. FIELDing a buffer does not clear

the contents of the buffer; only the means of accessing the buffer
(the field names) are changed. Furthermore, two or more field
names can reference the same area of the buffer.

Examples:

FIELD 15 128 AS A%s 128 AS B$

This statement tells BASIC to assign the first 128 bytes of the buffer
to the string variable A$ and the remaining 128 bytes to BS. If you
now print A$ and BS, you will see the contents of the buffer. Of
course, this value would be meaningless unless you have used GET
to read a 256-byte record from disk.

Note: All data — both strings and numbers — must be placed into
the buffer in string form. There are three pairs of functions

(MKIS$/CVI,MKS$/CVS,MKD$/CVD) for converting numbers to
strings and vice-versa. See “‘Functions”, below.

7-51

DISK BASIC

FIELD 3, 16 AS NM$, 25 AS AD$, 1@ AS CY$, 2 AS ST$.7 RS ZF$

The first 16 bytes of buffer 3 are assigned the buffer name NM$; the
next 25, ADS§; the next 10, CYS$; the next 2, ST$; and the next
7, ZP$. The remaining 196 bytes of the buffer are not fielded at all.

More on field names

Field names, like NM$,ADS,CY$,ST$ and ZP$, are not string
variables in the ordinary sense. They do not consume the string
space available to BASIC.

Instead, they point to the buffer field which you assigned with the
FIELD statement. That’s why you can use:

168 FIELD 1,255 RS A$

without worrying about whether 255 bytes of string space are
available for AS.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field; therefore
you won'’t be able to access that field using the previous field name.

For example,
A$=B$
nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the
255-byte buffer, where it can be accessed using the field names
assigned to that buffer. During random output, LSET and RSET
place data into the buffer, so you can then PUT the buffer contents
into a disk file.

Often you’ll want to use a dummy variable in a FIELD statement
to “pass over’” a portion of the buffer and start fielding it somewhere
in the middle. For example:

FIELD 1s 16 AS CLIENT$(1)s 112 AS HIST#$(1)
FIELD 1. 12B AS DUMMY$s 16 AS CLIENT$(2)s 112 AS HIST$(Z)

In the second FIELD statement, DUMMY$ serves to move the starting
position of CLIENT$(2) to position 129. In this manner, two
identical “subrecords” are defined on buffer number 1. We won’t
actually use DUMMYS to place data into the buffer or retrieve it from
the buffer.

7-52

DISK BASIC

The buffer now “looks” like this:

16 112 16 112

cLS HISTS cL$ HISTS
(n (1 (2) (2)

le———DUMMYS ———»

GET
(read a record from disk — random access)

GET nmexpl [,nmexp2]

where nmmexpl specifies a random access file buffer,
nmexpl=1,2,...,15
nmexp2 specifies which record to GET in the
file; if omitted, the current record will
be read.

This statement gets a data record from a disk file and places it in the
specified buffer. Before GETting data from a file, you must open
the file and assign a buffer to it. That is, a statement like:

OPEN “R",nmexpl,filespec
is required before the statement:

GET nmexpl,nmexp2

When BASIC encounters the GET statement, it looks at the buffer’s
control block, and obtains:

the information needed to access the file

the mode in which this buffer was set up (must be R)
the current record number

The EOF (end-of-file) record number, i.e., the highest
numbered record in the file

* |ots of other information for internal use

BASIC then reads record nmexp2 from the file and places it into the
buffer. If you omit the record number, it will read the current record.

The “current record” is the record whose number is one higher than
that of the last record accessed. The first time you access a file via
a particular buffer, the current record is set equal to 1.

7-563

DISK BASIC

For example:

Program statement Effect

1000 OPEN“R",1,"NAME/BAS"” Open NAME/BAS for random
access using buffer 1

1010 FIELD 1,... Structure buffer

1020 GET 1 GET record 1 into buffer 1
1025 REM ... ACCESS BUFFER

1030 GET 1,30 GET record 30 into buffer 1
1035 REM ... ACCESS BUFFER

1040 GET 1,25 GET record 25 into buffer 1
1046 REM ... ACCESS BUFFER

1050 GET 1 GET record 26 into buffer 1

If you attempt to GET a record whose number is higher than that
of the end-of-file record, BASIC will fill the buffer with hex zeroes,
and no error will occur.

To prevent this from occurring, you can use the LOF function to
determine the number of the highest numbered record.

PUT
(write a record to disk — random access)

PUT nmexpl [,nmexp2)

where nmexpl specifies a random access file buffer,
nmexp=1,2,...,15

nmexp2 specifies the record number in the file,
nmexp2=1,2,.., up to 335, depending
on how much space is available on the
disk; if nmexp2 is omitted, the current
record number is assumed.

This statement moves data from a file’s buffer into a specified place
in the file. Before PUTing data in a file, you must:
1) OPEN the file, thereby assigning a buffer and defining the
access mode (must be R);
2) FIELD the buffer, so you can
3) place data into the buffer with LSET and RSET statements.

DISK BASIC
[Sea—ae L e e S ————

When BASIC encounters the statement:
PUT nmexp nmexp2
it does the following:

Gets the information needed to access the disk file
Checks the access mode for this buffer (must be R)
Acquires more disk space for the file if necessary to
accommodate the record indicated by nmexp2

* Copies the buffer contents into the specified record of the
disk file

* Updates the current record number to equal nmexp2+1

The “‘current record” is the record whose number is one higher than
the last record accessed. The first time you access a file via a
particular buffer, the current record is set equal to 1.

If the record number you PUT is higher than the end-of-file record
number, then nmexpZ2 becomes the new end-of-file record number.

This has an important implication. When you PUT a record whose
number exceeds the EOF record number, space is allocated on the
disk to accommodate the new highest record number plus all
lower-numbered records. For example,

PUT nmexp,336
will always produce a DISK FULL message, since TRSDOS attempts

to find space for all records from 1 to 336 — and 335 is the maximum
number of records available on a diskette.

7-55

DISK BASIC

Examples (assume a file named SAMPLE/BAS exists and that you
have previously written 10 records to it, so that LOF=10):

Program statement Effect

1000 OPEN"“R",1,"SAMPLE/BAS” Open SAMPLE/BAS for random
address under buffer 1

1010 FIELD 1,...... Prepare buffer

1020:LSET oo vaviss Place data in buffer

1030 PUT 1 Copy buffer contents into
current record (=#1)

1035 LSET Place data in buffer

1040 PUT 1,30 Acquire disk space for records

2 through 30 and copy
buffer contents into record
30; set LOF=30

1045 LSET Place data in buffer

1050 PUT 1,25 Copy buffer contents into
record 25

1055 LSET .. o5 Place data in buffer

1060 PUT 1 Copy buffer contents into

current record (=#26)

7-56

DISK BASIC

LSET and RSET
(place data in a random buffer field)

LSET var$ = exp$ and RSET var§ = exp$

where pgr$ is a field name

exp$ contains the data to be placed in the buffer
field named by var$

These two statements let you place character-string data into fields
previously set up by a FIELD statement.

For example, suppose NM$ and AD$ have been defined as field
names for a random file buffer. NMS$ has a length of 18 characters,
and ADS has a length of 25 characters.

Now we want to place the following information into the buffer
fields so it can be written to disk:

name: JIM CRICKET, IR.
address: 2000 EAST PECAN ST.

This is accomplished with the two statements:

LSET HM$="JIM CRICKET.JR. "
LSET AD$="2008 EAST PECAN ST. "

This puts the data in the buffer as follows:

[JIMBCRICKET,JR.$pb | | 20008EASTYPECANBST.BBBBYY |

NMS$ ADS
Note that filler spaces were placed to the right of the data strings
in both cases. If we had used RSET instead of LSET statements, the
filler spaces would have been placed on the left. This is the only
difference between LSET and RSET.

For example:

RSET NM$="JIM CRICKET,JR. "
RSET AD$="20@@ EAST PECAN ST. "

places data in the fields as follows:

[GBPIIMBCRICKET JR. | [¥P¥BH2000pEASTRPECANPST. |
NM$ ADS

7-57

DISK BASIC

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the

right are ignored.

CVD, CVIand CVS
(restore string to numeric form)

CVD(exp$)

where exp$

CVI(exp$)

where exp$

CVS(exp$)

where exp§

defines an eight character string; exp$ is
typically the name of a buffer-field

containing a numeric string. If LEN(exp$)<8,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$)>8, only the first eight characters
are used.

defines a two-character string; exp§ is
typically the name of a buffer-field

containing a numeric string. If LEN(exp$)<2,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$)>2, only the first two characters
are used.

defines a four-character string; exp$ is
typically the name of a buffer-field
containing a numeric string. If
LEN(exp$)<4, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>4,
only the first four characters are used.

These functions let you restore data to numeric form after it is read
from disk. Typically the data has been read by a GET statement, and
is stored in a random access file buffer.

The functions CVD, CVI, CVS are inverses of MKD$, MKI$, and

MKSS$, respectively.

For example, suppose the name GROSSPAYS references an eight-
byte field in a random-access file buffer, and after GETting a record,
GROSSPAY § contains a MKDS representation of the number

13123.38.

7-58

DISK BASIC

Then the statement:

PRINT CYD(GROSSPRY$)-TAXES

prints the result of the difference, 13123.38—TAXES. Whereas the
statement:

PRINT GROSSPRY$-TRXES

will produce a TYPE MISMATCH error, since string values cannot be
used in arithmetic expressions.

Using the same example, the statement
R#=CVYD(GROSSPRY$)

assigns the numeric value 13123.38 to the double-precision variable
A#.

EOF (end-of-file detector)

EOF (nmexp)

where nmexp specifies a file buffer,
nmexp=1,2,...,15

This function checks to see whether all characters up to the end-of-
file marker have been accessed, so you can avoid INPUT PAST END
errors during sequential input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns

0 (false) when the EOF record has not yet been read, and —1 (true)
when it has been read.

Examples:

IF EOF(S> THEN PRINT"END OF FILE"FILENMS$
IF EOF(NMZ) THEN CLOSE NMZ

7-59

DISK BASIC
e ———

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 “‘passes”, so the program branches out of the
disk access loop, preventing an INPUT PAST END error from
occurring. Also note that the variable I contains the number of
elements input into array A().

5 DIM A(1@88> “ASSUMING THIS IS A SAFE VALUE

i@ OPEN "I", 1, "DRTA/TXT"

28 17Z=8

38 IF EOF(1)> THEN 7@

48 INPUT#L, ACTZD

50 IZ=Ix+1

68 GOTO 28

7@ REM PROGRAM CONTINUES HERE AFTER DISK INPUT

LOF (get end-of-file record number)

LOF(nmexp)

where nmexp specifies a random access buffer
nmexp=1,2,...,15

This function tells you the number of the last, i.e., highest numbered,
record in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often
need a way to know when you've read the last valid record. LOF
provides a way.

Examples:

16 OPEN "R", 1, "UNKNOWN/TXT"
20 FIELD 1,255 AS A$

30 FORIZ=1 TO LOFC(1)

48 GET 1, IZ

58 PRINT R$

60 NEXT

In line 30, LOF(1) specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file
record, BASIC simply fills the buffer with hexadecimal zeroes, and
no error is generated.

When you want to add to the end of a file, LOF tells you where to
start adding:

166 1Z=LOF(1>+1 “HIGHEST EXISTING RECORD

118 PUT 1, 1% “ADD NEXT RECORD

7-60

DISK BASIC

MKD$, MKI$ and MKS$
(convert data, numeric-to-string)

MKDS$(nmexp)
where nmexp is evaluated as a double-precision number
MKIS$(nmexp)
where nmexp is evaluated as an integer,
—32768<=nmexp <32768;if nmexp exceeds
this range, an ILLEGAL FUNCTION CALL

error occurs; any fractional component in
nmexp is truncated

MKSS$(nmexp)

where nmexp is evaluated as a single-precision number

These functions change a number to a “‘string”. Actually the byte
values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data can
be placed in a string variable. (See LEVEL Il Reference Manual,
VARPTR Function, for details of internal number representation.)

That is:

MKDS$ returns an eight-byte string
MKI$ returns a two-byte string
MKS$ returns a four-byte string

Examples:

ASC(MKIS$(1%)) equals the 1sb of 1%, i.e., (I% AND 255)
ASC(RIGHT$S(MKIS$(I),1))=the msb of 1%, i.e., INT(1%/256)

LSET AVG$=MKS$(0.123)

AVGS would typically reference a four-byte random buffer field.
Now it contains a representation of the single-precision number
0.123.

7-61

DISK BASIC

LSET TALLY$=MKI$(IX)

Field name TALLY$ would now contain a two-byte representation
of the integer 1%.

A$=MKI$(B/1)

AS becomes a two-byte representation of the integer portion of 8/I.
Any fractional portion is ignored. Note that AS in this case is a
normal string variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been
opened for random access using buffer 2, and the buffer has been
FIELDed as follows:

field: NM$ YRSS AVGS HRS$S ABS ERNINGS
length: 16 2 4 2 4 4

NMS$ is intended to hold a character string; AVG$, ABS and
ERNINGS, converted single-precision values; YRS and HRS,
converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 38 years ; lifetime batting average .123;
career homeruns, 11; at bats, 32768; ..., earnings —13.75.

Then we’d use the make-string functions as follows:

108@ LSET NM$="SLOW LEARNER"
1016 LSET YRS$=MKI$(38)

1828 LSET AVGS=MKS$(. 123D
1838 LSET HR$=MKI$(11)

1840 LSET AB$=MKS$(32768)
1858 LSET ERNING$=MKS$(-1Z. 75)

After this sequence, you can write SLOW LEARNER’s information
to disk with the PUT statement. When you read it back from disk
with GET, you will need to restore the numeric data from string

to numeric form, using CVI and CVS functions.

7-62

DISK BASIC

Sequential A ccess Techniques

Sequential input/output is the simplest way to store data in disk
files and retrieve it into BASIC variables.

To write to disk, you open a file for sequential output, PRINT# the
data, and close the file. To read the data back, you simply open
the file for sequential access and INPUT # the data directly into
BASIC variables — in the same order as the data was written onto
the disk.

Sequential Output — An Example

Suppose we want to store a table of English-to-metric conversion

constants:

English unit Metric equivalent

1 inch 2.54001 centimeters
1 mile 1.60935 kilometers
1 acre 4046.86 sq. meters

1 cubic inch 0.01638716 liter

1 U.S. gallon 3.785 liters

1 liquid quart 0.9463 liter

1 1b (avoir) 0.45359 kilogram

First we decide what the data image is going to be. Let’s say we want
it to look like this:

english unit—>metric unit, factor <EN>
For example, the stored data would start out:
IN->CM,$2.540018 <EN>

The following program will create such a data file.

Note: <EN> represents a carriage return, hex OD.

7-63

DISK BASIC

16 OPEN"O", 1, "METRIC/TXT"

28 FORI%=1 TO 7

3@ READ UNIT#, FACTR

48 PRINT#1, UNITS; ", "; FACTR

98 NEXT

68 CLOSE

78 DATA IN-DCHM, 2. 54801, MI->KM, 1. 68935, ACRE->SO. M, 4846, 86
88 DATA CU. IN->LTR. 1. 638716E-2, GAL->LTR, 2. 785

98 DATA LIGL @T->LTR. 8. 9463, LB->KG. 6. 45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1
for sequential output to that file. The extension /TXT is used because
sequential output always stores the data as ASClI-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data
to be lost. Here’s why: Whenever a file is opened for sequential
output, the EOF marker is set to the beginning of the file. In effect,
TRSDOS “forgets” that anything has ever been written beyond

this point.

Line 40 prints the current contents of UNITS$ and FACTR to the file
buffer. The disk-write won’t actually take place until the buffer is
filled or you close the file, whichever happens first. Since the string
items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF marker points to the end of the last

data item, i.e., 0.45359, so that later, during input, DISK BASIC will
know when it has read all the data.

7-64

DISK BASIC
e e P

Sequential Input — An Example

The following program reads the data from METRIC/TXT into two
“parallel” arrays, then asks you to enter a conversion problem.

S CLEAR Sea

16 DIM UNITS$(9), FRCTR(S> “ALLOWS FOR UP TO 1@ DARTA PAIRS
28 OPEN"I", 1, "METRIC/TXT"

25 1%4=8

38 IF EOF(1) THEN 7@

40 INPUTH#1, UNIT${I%), FACTRCIZD

98 17=1%+1

668 GOTO 3@

7@ REM. .. THE CONVERSION FACTORS HRYE BEEN READ IN

16@ CLS: PRINT TAB(S)"ssek ENGLISH TO METRIC CONYERSIONS k"
118 FOR ITEMZ=8TOIX-1

128 PRINT USING"(## > “ 7" ITEMZ, UNIT$CITEMZ)
138 NEXT

148 PRINT@784, "WHICH CONVERSION ";

156 INPUT CHOICEX

155 PRINT@768, "ENTER ENGLISH QUANTITY";

168 INPUT V

178 PRINT"THE METRIC EQUIVALENT IS"V*FACTR(CHOICEZ)

188 INPUT"PRESS ENTER TO CONTINUE": X

158 PRINTE7@4, CHR$(21)>; ‘CLERAR TO END OF FRAME

208 GOTO 1486

Line 20 opens the file for sequential input. The read pointer is
automatically set to the beginning of the file.

Line 30 checks to see that the end-of-file record hasn’t been read.
If it has, control branches from the disk input loop to the part of the
program that uses the newly acquired data.

Line 40 reads a value into the string array UNITS$(), and a number into
the single-precision array FACTR(). Note that this INPUT list
parallels the PRINT # list that created the data file (see the section
“Sequential Output: An example™). This parallelism is not required,
however. We could just as successfully have used:

48 INPUTH#L, UNIT$CIX) : INPUTH4, FRCTRCIZD

7-65

DISK BASIC

How to update a file

Suppose you want to add more entries into the English-Metric
conversion file. You can’t simply re-open the file for sequential
output and PRINT # the extra data — that would immediately set
the end-of-file marker to the beginning of the file, effectively
destroying the file’s previous contents. Do this instead:

1) Open the file for sequential input

2) Input the entire file and store it
(typically in one or more arrays)

3) Close the file

4) Add your new entries to the data array, or correct
existing entries

5) Re-open the file for sequential output

6) Output the updated data array to the file

7) Close the file

If the file is too large to fit in memory, update it this way:

1) Open the file for sequential input

2) Open another new data file for sequential output

3) Input a block of data and update the data as necessary

4) Output the data to the new file

5) Repeat steps 3 and 4 until all data has been read,
updated, and output to the new file; then go to
step 6

6) Close both files

7) Kill the old data file

8) Rename the new file (TRSDOS RENAME command)
to the name of the old file.

7-66

DISK BASIC

Sequential LINE INPUT - An Example

Using the line-oriented input, you can write programs that edit other
BASIC program files : renumber them, change LPRINTSs to PRINTS,
etc. — as long as these “‘target” programs are stored in ASCII format.

The following program counts the number of lines in any disk file
with the extension “/TXT".

16 CLERR 268

28 INPUT “"WHAT IS THE NAME OF THE PROGRAM"; PROGS$

28 IF INSTR(PROGS, "/TXT")=8 THEN 118 ‘REQUIRE /TXT EXTENSION
48 OPEN"I", 1, PROGS$

58 I%=8

68 IF EOF(1)THEN 9@

70 IZ=IZ+1: LINE INPUT#1. TEMP$

88 GOTO&8

98 PRINT"THE PROGRAM IS"IX"LINES LONG. "

168 CLOSE: GOTO28

118 PRINT "FILESPEC MUST INCLUDE THE EXTENSION “/TXT"
128 GOTOz@

For BASIC programs stored in ASCII, each program line ends with
an <EN > character not preceded by an < LF > line feed.
So the LINE INPUT in line 70 automatically reads one entire line at

a time, into the variable TEMPS$. Variable 1% actually does the
counting.

To try out the program, save DISKDUMP/BAS as a text file:

LOAD"DISKDUMP/BAS"
SRYE“DISKDUMP/TXT", A

This gives you a second, ASCII-format version of DISKDUMP.

Now type in the line-counter program and tell it to examine the
program DISKDUMP/TXT.

7-67

DISK BASIC

Special Hints on Using Sequential Access

One thing that makes sequential access so simple is that you can
generally ignore the details of disk storage. You just write your data
and read it back.

Described below are a few of the technical details and hints you
should keep in the back of your mind. In some situations, they will
become important.

1.

PRINT # statements don’t write data directly to the disk;
instead, the data is placed in the 256-byte output buffer.
When this buffer is filled, the contents are automatically
written to disk. (Closing the file will also write the buffer
to disk.)

If a DISK FULL ERROR occurs during execution of a PRINT#
statement, you should realize that the current contents of the
output buffer have not been written to the file. The data in

the disk file is intact, but it doesn’t contain the last few values
you PRINTed to it.

If your variables still contain the data, you can recover it
directly.

If you are writing data in 255-byte blocks, and you want to
read the data with INPUT statements, you should leave a
trailing semi-colon at the end of the PRINT #n statement, so
that DISK BASIC won’t put a carriage return at the end of each
data block.

Example:

18 CLEAR 300

20 OPEN "O"s 1+ "TEST/DAT"

38 FOR I =1 70 5

4@ PRINT #1» STRING$(255,1+65)3
5@ NEXT I

&8 CLOSE

DISK BASIC

This program writes five 255-byte strings with no delimiters,
because of the trailing semi-colon in line 30. Since string
input stops after the 255th character, no delimiter is needed.
The data can be read in by the following program:

1@
z@
30
4@

5@
&0

7@

CLEAR 1006

OPEN "I"s 14

FOR I=1 TO 5
INPUT #1+ A%
PRINT A%

NEXT 1

CLOSE

"TEST/DAT"

If the data had been written with carriage returns, then every
other INPUT would return a null string, since it would encoun-
ter a carriage return as the first character.

7-69

DISK BASIC

Random A ccess Techniques

Random access offers several advantages over sequential access:

e Instead of having to start reading at the beginning of a file,
you can read any record you specify.

e To update a file, you don’t have to read in the entire file,
update the data, and write it out again. You can rewrite or
add to any record you choose, without having to go through
any of the other records.

e Random access is more efficient — data takes up less space and
is read and written faster.

e Opening a file for random access allows you to write to and
read from the file via the same buffer.

. Random access provides many powerful statements and
functions to structure your data. Once you have set up the
structure, random input/output becomes quite simple.

The last advantage listed above is also the “hard part™ of random
access. It takes a little extra thought.

For the purposes of random access, you can think of a disk file as a
set of boxes — like a wall of post-office boxes. Just like the post
office receptacles, the file boxes are numbered.

The number of boxes in a file will vary, but it’s always a multiple
of 5.

The smallest non-empty file contains 5 boxes, numbered 1 through
5. When the file needs more space to hold more data, TRSDOS
provides it in increments of 5.

These fixed-sized boxes are referred to as “‘records”. Each record
contains 256 bytes.

You can place data in any record, or read the contents of any
record, with statements like:

PUT 1.5 write buffer-1 contents to record 5
GET 1.5 read the contents of record 5 into buffer-1

7-70

DISK BASIC

~ |
[| | | |

N A

| #7 | #8 | #9

o S N

S g
o) [() e N T ese feee [
i : N
M | #2 | 83| #a |#5 “GET 1,5” # |# | 7
RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file,
you must place it in the buffer assigned to the file. After reading
data from a file, you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data
is passed to and from the disk in 256-byte chunks.

“That’s a lot of data.” But most values occupy only a few bytes:

Integers 2
Single-precision numbers 4
Double precision numbers 8
Strings Up to 255

Therefore you’ll want to place several values into the buffer before
PUTting its contents into the disk file, to avoid wasting disk space.

This is accomplished by 1) dividing the buffer up into fields and
naming them, then 2) placing the string or numeric data into the
fields.

For example, suppose we want to store a glossary on disk. Each
record will consist of a word followed by its definition. We start
with:

1@@ OPEN "R"a1,"GLOSSARY/BAS"
11@ FIELD 1:16 AS WD%s 240 AS MEANINGS

Line 100 opens a file named GLOSSARY /BAS (creates it if it doesn’t
already exist); and gives buffer 1 random access to the file.

Line 110 defines two fields onto buffer 1:
WDS$ consists of the first 16 bytes of the buffer;
MEANINGS consists of the last 240 bytes.

WD$ and MEANINGS are now field-names.

7-71

DISK BASIC

What makes field names different? Most string variables point to an
area in memory called the string space. This is where the value of
the string is stored.

Field names, on the other hand, point to the buffer area assigned
in the FIELD statement. So, for example, the statement:
18 PRINT WD$ “: " MEANINGS

displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer.
LSET, RSET and GET can all be used to accomplish this function.
We’ll start with LSET and RSET, which are used in preparation

for disk output.

Our first entry is the word “left-justify” followed by its definition.

102 OPEN "R"s 1, “"GLOSSARY/BAS"

11@ FIELD 1s 156 AS WD$s 240 AS MEANINGS

120 LSET WD% = "LEFT-JUSTIFY"

130 LSET MEANINGS = “TO PLACE A VALUE IN A FIELD FROM LEFT

TO RIGHT:;IF THE DATA DOESN'T FILL THE FIELD:s BLANKS ARE ADDED
ON THE RIGHT3:IF THE DATA 1S5 TOO0 LONGs THE EXTRA CHARACTERS ON
THE RIGHT ARE IGNORED. LSET IS A LEFT-JUSTIFY FUNCTION®

Line 120 left-justifies the value in quotes into the first field in buffer
1. Line 130 does the same thing to its quoted string. When typing
in line 130, you should insert line-feed <LF > characters (press the
down arrow) to force line breaks as above. This makes it easier

to print out the data after reading it back in to a string variable.

Note: RSET would place filler-blanks to the left of the item.
Truncation would still be on the right.

Now that the data is in the buffer, we can write it to disk with a
simple PUT statement:

140 PUT 1.1
15@ CLOSE

This writes the first record into the file GLOSSARY /BAS.

To read and print the first record in GLOSSARY/BAS, use the
following sequence:

16@ OPEN "R"» 15 "GLOSSARY/BAS"

17@ FIELD 1+ 16 AS WD%sy 240 A5 MEANINGS
180 GET 141

19@ PRINT WD% *: " MEANINGS

200 CLOSE

Lines 160 and 170 are required only because we closed the file in
line 150. If we hadn’t closed it, we could go directly to line 180.

7-72

DISK BASIC

Random Access: A general procedure

The above example shows the necessary sequences to read and

write using random access. But it does not demonstrate the primary
advantages of this form of access — in particular, it doesn’t show
how to update existing files by going directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example
to show some of the techniques of random access for file maintenance.
But before looking at the program, study this general procedure for
creating and maintaining files via random access.

Step Number See GLOSSACC/BAS, Line Number
1. OPEN the file 110

2. FIELD the buffer 120

3. GET the record to be updated 140

4. Display current contents of 145-170

the record (use CVD,CVI,CVS
before displaying numeric data)
5. LSET and RSET new values into 210-230
the fields (use MKD$ MKI$,MKS$
with numeric data before setting
it into the buffer)

6. PUT the updated record 240

7. To update another record, continue 250-260
at step 3. Otherwise, go to step 8.

8. Close the file 270

7-73

DISK BASIC

18 REM GLOSSACC/BAS ...

1@ CLS : CLEAR 300

11@ OPEN "R": 1: "GLOSSARY/BAGS"

120 FIELD 1s 14 AS WD$s 238 AS MEANINGS, = A5 NX#
130 INPUT "WHAT RECORD DO YOU WANT TO ACCESE": R%
14@ GET 1» R%

145 NXL = CVI(NX$) PSAVE LINK TO NEXT ALPHABETICAL ENTRY
15@ PRINT "WORD = "WD%

16@ PRINT “DEF’N : " : PRINT MEANINGS
170 PRINT "NEXT ALPHABETICAL ENTRY: RECORD #" NXZ : PRINT
18@ W$ = *" : INPUT "TYPE NEW WORD <EN> OR <EN> IF OK"3: W%
19@ D$ = "* : PRINT "TYPE NEW DEF’N <EN> OR <EN: IF OK?"
LINE INPUT D%
INPUT "TYPE NEW SEQUENCE NUMBER OR <EN: IF OK"3 NX%
IF We <> """ THEN LSET WD$ = W$
220 IF D$ <» "" THEN LSET MEANING® = D%
230 LSET NX% = MKI$® (NX%L)
240 PUT 1. R%
245 R% = NX¥% "USE NEXT ALPHA. LINK AS DEFAULT FOR NEXT RECORD
25@ CLS : PRINT " TYPE <EN> TO READ NEXT ALPHA. ENTRY.":
PRINT®" OR RECORD # <EN> FOR SPECIFIC ENTRYs":
INPUT * OR @ <EN> TO QUIT"3: R%
260 IF @<R% THEN 140
270 CLOSE
2B@ END

Notice we’ve added a field, NX8§, to the record (line 120). NX$ will
contain the number of the record which comes next in alphabetical
sequence. This enables us to proceed alphabetically through the
glossary, provided we know which record contains the entry which
should come first.

For example, suppose the glossary contains:

pointer to next

record # word (WD$) defn, alpha. entry (NXS8)
1 LEFT-JUSTIFY 3
2 BYTE - 4
3 RIGHT-JUSTIFY e 0
4 HEXADECIMAL 1

When we read record 2 (BYTE), it tells us that record 4
(HEXADECIMAL) is next, which then tells us record 1 (LEFT-
JUSTIFY) is next, etc. The last entry, record 3 (RIGHT-JUSTIFY),
points us to zero, which we take to mean “THE END”.

Since NX§ will contain an integer, we have to first convert that

number to a two-byte string representation, using MKIS$ (line 230
above).

7-74

DISK BASIC

)

WHAT RECORD DO YOU WANT TO ACCESS? &

WORD: HEXIDECIMAL

DEFN:

CRPABLE OF EXISTING IN ANY OF 16 STATES, E.G., THE HEXADECIMAL
DIGITS @.1.2,...,9 A6, C.D,E,F. HEXADECIMAL NUMBERS ARE STRINGS

OF HEXADECIMAL DIGITS
NEXT ALPHABETICAL ENTRY: RECORD# 1

TYPE NEW WORDSEN> OR <EN> IF OK? HEXRDECIMAL
TYPE NEW DEF‘NCEN> OR <EN> IF 0K? ENED

TYPE NEW SEGUENCE NUMBER OR <EN> IF OK?

TYPECEN> TO READ NEXT ALPHA. ENTRY,

OR RECORD # <EN> FOR SPECIFIC ENTRY,

OR @ <EN> TO QUIT?
WORD: LEFT-JUSTIFY
DEF“N:
TO PLACE DATA IN A FIELD FROM LEFT TO RIGHT. ADDING BLANKS RS
NECESSARY ON THE RIGHT TO FILL THE FIELD. ANY EXTRA CHARACTERS
ON THE RIGHT ARE IGNORED.

NEXT ALPHRBETICAL ENTRY: RECORD# 2

TYPE NEW WORD<EN> OR <EN> IF 0K? EXLEA
TYPE NEW DEF/NCEN> OR <EN> IF oKk? EXMED

TYPE NEW SEQUENCE NUMBER OR <EN> IF 0K? 2 EIED

7-75

DISK BASIC
e —-——— e

The following program displays the glossary in alphabetical sequence:

3068 REM ... GLOSSOUT/BAS

318 CL.5 = CLEAR 300

320 OPEN "R"s 1. "GLOSSARY/BAS"

330 FIELD 1, 16 A5 WD%s 238 A5 MEANING®s 2 AS NX#%
34@ INPUT "WHICH RECORD IS FIRST ALPHABETICALLY"3 NX
3580 GET 1+ NX

360 PRINT : PRINT WD$

370 PRINT MEANINGS$

380 NA = CVIINX%)

39@ INPUT "PRESS ENTER TO CONTINUE"3: X

400 IF N4 <> @ THEN 358

4180 CLOSE

420 END

Sub-Records

In the glossary example, each entry required the full 256 bytes available
in the buffer. Often this is not the case. When each information-unit
fills only a part of the buffer, it is a good idea to define several

identical sub-records on the buffer. That way you don’t waste disk
space by PUTting records which contain only a few bytes of useful
information.

For example, suppose we want to store a mailing list, and each entry
will consist of:

field field length
name 18
address 26
city 14
state 2
last purchase amt. 4

Total length of entry: 64

Note: The last-purchase-amount will be a single-precision number.
Such values require 4 bytes, therefore the field length is 4.

If we didn’t care about wasting space on the disk, we could use the
following statement:

FIELD 1, 18 AS NM$s 26 AS AD%s 14 AB CTY$s 2 AB S5T$Hs 4 A5 LP$

PUTting such a buffer would create a record consisting of 64 bytes of
information followed by 256-64=192 unused bytes.

7-76

DISK BASIC

A more efficient approach fields the buffer into identical sub-records.
In this case, we can create 256/64=4 sub-records with no wasted
bytes at the end.

Instead of using a very long FIELD statement to explicitly assign each
field, we re-field the buffer once for each sub-record, using a dummy
string, STARTHERES, to start each sub-record at the appropriate
position in the buffer.

FOR IZ = 8 To 3
FIELD 1s (I%Z * 64) AS STARTHERE$:s 18 AS NM&(I%Z),

26 AS ADH(IA)y 14 AS CTY$(IX)s 2 AB STH(I%)s 4 AS LPH(IL)
NEXT

The first time through the loop, STARTHERES will have a length of
zero. Therefore NM$(0) will start at the first byte; AD$(0), at the
19th byte, etc.: LPS$(0) will end at the 64th byte.

The second time through the loop, STARTHERES will have a length
of 64. Therefore NM$(1) will start at the 65th byte; ADS(1), at the
92nd byte, etc.; LPS(1) will end at the 128th byte.

And so forth, until the buffer is completely defined.

To place values in the subrecords of the buffer: assume our mailing
list entries are stored in four arrays, N$(),AS$(),CS$(),SS$(),LP().

Then we can fill the buffer with four entries as follows:

FOR Ix=@T0Z

LSET NM$CIZI=N$CIHD

LSET RD$(IXI=RECTID

LSET CT$CIXI=C$(1

LSET ST$C(IX=S$(1%D

LSET LP$CIX)=MKS$(LPC1E)D
NEXT

7-77

DISK BASIC

How to Access Sub-Records

Since each record in such a file will contain four sub-records, we
need a way to pull out the sub-record we want. This requires that
each sub-record have a unique number which can be related to the
record which contains it.

For this example, suppose we have a printout of the entire mailing
list, starting from the first sub-record in record | and going through

to the last sub-record in the last record. We then number them
sequentially, starting with 1.

The following formulas use this number (we’ll call it a key-number)
to determine exactly where the sub-record is in the file:

If the sub-record’s key-number is KEY%, then
PR% = INT(KEY%—1)/4)+1
where PR% is the physical record that contains the sub-record, and
SR%= KEY% — 4*(PR%—1)
where SR% is the sub-record number inside the physical record. For
example, suppose we want to access the entry with key number = 37
(i.e., the 37th entry). Then the physical record which contains it is:
INT((37-1)/4)+1 == > record 10

And its position in record 10 is:

37 — 4*(10—1)+1 == > sub-record number 1|

7-78

DISK BASIC

A full working program for creating and manipulating a mailing list
follows:

100 CLEAR 1000

11@ OPEN "R"y 1y "MAIL/BAS"

12@ CLS * INPUT "TYPE 1 <EN> TO WRITEs 2 <EN>
@ <EN> TO QUIT"3 N%

130 IF N% = @ THEN CLOSE : END

14@ INPUT "TYPE KEY NUMBER <EN> OR @ <EN>"3 K

1580 IF KEYZ = @ THEN 120

160 PRZ = INT((KEYZ - 1)/4) + 1

17@ SR% = KEY%Z — 4 % (PR%Z - 1)

180 FIELD is ((SR% - 1) % 64) AS STARTHERE®,
6 AS AD$s 14 AS CTY$s 2 AS ST4 4 AS LP$

19@ GET 1» PRY

20@ IF N%Z = Z THEN 300

1@ PRINT "WRITING SUBRECORD # "SR%" IN PHYSI

220 PRINT : PRINT "NAME?" TAB(2@); : LINEINPU

30 PRINT "ADDRESS?" TAB(2@)3 : LINEINPUT A%

24@ PRINT "CITY?" TAB(2@)3 : LINEINPUT C$: L

5@ PRINT "STATE?" TAB(2@)5 : LINEINPUT S%

26@ PRINT "LAST PURCHASE" TAB(2Z@)3 : INPUT LP

7@ PUT 1s PR% : PRINT : INPUT “PRESS <EN> TO

30@ PRINT "READING SUBRECORD # "SRAL" IN PHYSICAL RECORD #°

41@ PRINT @ PRINT "NAME®" TAB(Z®) NM%

328 PRINT "ADDRESS" TAB(2Z@) AD%

33@ PRINT "CITY" TAB(zD) CTY$

340 PRINT "STATE" TAB(20) 5T%

350 PRINT USING "LAST PURCHASE SHHEHE . H
36@ PRINT & INPUT "PRESS <EN> TO GO ON"3 X

This program actually doesn’t require you to fill the buffer with four
meaningful sub-records. As soon as you've placed a sub-record in the
correct position in the field, the entire buffer is written to disk.
However, the extra space is not wasted; it is always available for
subsequent sub-records to be added.

Note that this would not be the most efficient way to create a list at
one “‘sitting”. In such a case you’d probably want to fill the buffer
with four sub-records before doing the disk-write. The above program
does, however, show you how to update a file using random access.

-

TO READS

EY%

18 AE NM%s

CAL RECORD #

"PR%

T N$% = LSET NM$ =

LSET AD% =

SET CTY$® = C%
LSET &T% = &%
POLBET LP$ =

A%

MKGH P

GO ON's X GOTO

#" 3 CVG(LPS$)
GOTO 120

7-79

PR%

DISK BASIC

—

TYPE 1<EN> TO WRITE, 2<EN> TO RERD.
a<EN> TO ouIT? § ERED

TYPE KEY NUMBER<EN> OR 2<EN>? 3 EIEA

WRITING SUBRECORD # X IN PHYSICAL RECORD # 1

NAME? -
ADDRESS? 2222
CITY?

STATE? v

LAST PURCHASE R HENTER)

PRESS <EN> TO GO ON?

TYPE 1<EN> TO WRITE, 2<EN> TO RERD,
B<EN> TO QUIT? 2 EED

TYPE KEY NUMBERCEN> OR @<EN>? ¥ ENEA

READING SUBRECORD # 1 IN PHYSICAL RECORD # 1

NAME JOHNSON, J. R
ADDRESS 1624 RAM DRIVE
CITY FORT WUMPUS
STATE X

LAST PURCHASE $ 188. 75

PRESS <EN> TO GO ON?

TYPE 1<EN> TO WRITE, 2<EN> TO RERD.
B<EN> TO QUIT? @ ENEED
§EHDV

7-80

DISK BASIC

Overlapping Fields

Suppose you want to access a field in two ways — in total and in

part. Then you can assign two field names to the same area of the
buffer.

For example, if the first two digits of a six-digit stock-number specify
a category, you might use the following field structure:

FIELD 1, 6 AS STOCKS,
FIELD 1,2 ASCTGS,

Now STOCKS will reference the entire stock-number field, while
CTGS$ will reference only the first two digits of the numbper.

7-81

DISK BASIC

DISK BASIC Error Messages

Code

Message

Explanation

51

52

53

54

55

58

63

64

65

FIELD OVERFLOW

INTERNAL ERROR

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODE

DISK I/O ERROR

DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD FILENAME

More than 255 bytes were
allocated to a random-access
buffer.

Error in disk operating system
itself, or disk 1/O fault.

A file-buffer number was used
improperly; number has not
been assigned to a file with an
OPEN statement.

Attempt to read from a file
which is not contained on the
disk; check name/extension
to see they were specified
correctly.

Attempt to perform disk

file input or output which
conflicts with the mode in
which the file was opened.

An error occurred during
data transfer between the
Computer and a disk file.

All available space on the
diskette has been used.

During sequential input to a
variable, the end of file was
reached before any data
characters were read.

Record number in a PUT
statement exceeded the
range <1,340>.

An invalid file specification
was provided; study “File
Specification™, TRSDOS
Overview.

Note: Disk errors cannot be simulated via the ERROR statement

7-82

DISK BASIC

Code Message Explanation

67 DIRECT STATEMENT IN FILE Attempt to LOAD, RUN, or
MERGE a disk file which is
not a BASIC program.

68 TOO MANY FILES Attempt to place more than
48 files on a single diskette.

69 DISK WRITE-PROTECTED Attempt to write to disk
with write-protect notch
covered.

70 FILE ACCESS DENIED Attempt to access existing
file with incorrect password.

7-83

Appendices

nomMO=—-02muud

Contents of This Section

BRIOGBEIY & on m 5 0w 5w 5 30 50w 5 996 5 09 8 50 4 3 5 90 940 W08 ¥ B 3 2

Memory Map i 13

TRSDOS Character Tablesc.cuun.. 14

BaseConversionscoiiiiiiainn 18
Section 8 - Page 1

e

Appendices

Glossary

access

The method in which information is read from or written to disk;
see random access and sequential access.

address

A location in memory, usually specified as a two-byte hexadecimal
number. The address range<O to FFFF>is represented in decimal
as<0to 32767 > <-32768,...,-1>

alphabetic
Referring strictly to the letters A-Z.

alphanumeric
Referring to the set of letters A-Z and the numerals 0-9.

argument

The string or numeric quantity which is supplied to a function and
is then operated on to derive a result; this result is referred to as
the value of the function.

array

An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts.
In BASIC, any variable name can be used to name an array; and
arrays can have one or more dimensions. AR() signifies a
one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII

American Standard Code for Information Interchange. This method
of coding is used to store textual data. Numeric data is typically
stored in a more compressed format.

ASCII format disk file

Disk files in which each byte corresponds to one character of the
original data. For example, a BASIC program stored in ASCII format
“looks like” the program listing, except that each character is
ASCII-coded. Compare to compressed-format file.

background task

A relatively slow routine which the computer executes along with
other background tasks, and which is subject to interrupts. When

the interrupt-driven tasks are completed, the background task
continues. See foreground task, task.

82

Appendices

backup disk

An exact copy of the original: a “safe copy™. You should keep
backups of your original TRSDOS diskette and all important data
diskettes.

BASIC

Beginners’ All-purpose Symbolic Instruction Code, the programming
language which is stored in ROM in the TRS-80. Radio Shack
supports LEVEL I BASIC, LEVEL II BASIC, and DISK BASIC.
LEVEL 1l is a subset of DISK BASIC.

baud

Signalling speed in bits per second. The LEVEL II cassette interface
operates at 500 baud.

binary

Having two possible states, e.g., the binary digits O and 1. The
binary (base 2) numbering system uses sequences of zeroes and ones
to represent quantities. This is analagous to the Computer’s internal
representation of date, using electrical values for O and 1.

bit

Binary digit; the smallest unit of memory in the Computer, capable
of representing the values 0 and 1.

bootstrap program

A fundamental or primitive program which takes the Computer from
an OFF condition to one in which it is capable of loading and
executing a higher-level program — i.e., a program which allows the
Computer to pull itself up “by its own bootstraps™. A program
which initializes the Computer.

break

To interrupt execution of a program. In BASIC the statement
STOP
causes a break in execution, as does pressing the BREAK key.

buffer

An area in RAM where data is accumulated for further processing.
For example, to pass data from BASIC to a disk file, and vice-
versa, the data must go through a file-buffer.

buffer field

A portion of the buffer which you define as the storage area for a
buffer-field variable. Dividing a buffer into fields allows you to
pass multiple values to and from disk storage.

~

83

Appendices

byte
The smallest addressable unit of memory in the Computer,

consisting of 8 consecutive bits, and capable of representing 256
different values, e.g., decimal values from O to 255.

compressed-format

A method of storing information in less space than a standard ASCII
representation would require. An integer always requires two bytes;
a single-precision number, four; a double-precision number, 8 —
regardless of how many characters are required to represent the
numbers as text. String values cannot be stored in compressed
format.

BASIC programs in RAM and non-ASCII disk files are stored in
compressed-format, with all BASIC keywords stored as special
one-byte codes.

command file

A TRSDOS disk file with the extension /CMD. Such a file should
consist of an executable Z-80 program, since TRSDOS will load and
attempt to execute it when you type:

filename [FRE33

Command files can be placed on any disk; in effect, they extend
the set of TRSDOS library commands (though, of course, they
remain external to the TRSDOS system files).

close

Terminate access to a disk file. Before re-accessing the file, you
must re-open it.

data

Information that is passed to our output from a program; under
LEVEL II and DISK BASIC, there are four types of data:

® integer numbers

® single-precision floating point numbers

* double-precision floating point numbers

® character-string sequences, or just “‘strings”

data/device control block (DCB)

An area in RAM associated with an I/O buffer, containing
information the Operating System requires in order to access the
I/O device or file.

debug
To isolate and remove logical or syntax errors from a program.

8-4

Appendices

decimal

Capable of assuming one of ten states, e.g., the decimal digits
0,1,...,9. Decimal (base 10) numbering is the everyday system,
using sequences of decimal digits. Decimal numbers are stored in
binary code in the Computer.

default

An action or value which is supplied by the Computer when you
do not specify an action or value to be used.

delimiter
A character which marks the beginning or end of a data item, and

is not a part of the data. For example, the double-quote symbol is
a string delimiter to BASIC.

destination

The device or address which receives the data during a data transfer
operation. For example, during a BACKUP operation, the destination
disk is the one onto which the source-disk is being copied.

device

A physical part of the computer system used for data 1/O, e.g.,
keyboard, display, line printer, cassette, disk drive, voice synthesizer.

directory
A listing of the files which are contained on a disk.

disk drive or Mini Disk drive
The physical device which writes data onto diskettes and retrieves it.

diskette or disk
A magnetic recording medium for mass data storage.

drive specification or drivespec

An optional field in a TRSDOS file specification and in some
TRSDOS commands, consisting of a colon followed by one of the
digits O through 3. The drivespec is used to specify which drive is to
be used for a disk read or write.

When the drivespec is omitted from a command involving a read
operation, TRSDOS will search. through all the disks for the
desired file, starting with drive 0.

When the drivespec is omitted from a command involving a write

operation, TRSDOS will generally search through all non
write-protected drives for the desired file.

85

Appendices

drive number

An integer value from O to 3, specifying one of the Mini Disk
drives. Drive 0 is closest to the Expansion Interface, and Drive 3
is farthest away. Drive O must always contain the TRSDOS
diskette, with a couple of exceptions.

dummy variable

A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant to the programmer.

edit
To change existing information.

end of file or EOF

A marker which indicates the end of a disk file, i.e., where the
meaningful data ends and the unknown begins.

entry point

The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the
starting address. Entry point is also referred to as the
transfer address.

expression

A meaningful sequence of one or more variables, constants,
operators and functions.

field

A user-defined subdivision of a random access file-buffer, created
and named with the FIELD statement.

field name

A string variable which has been assigned to a field in a random
access file-buffer via the FIELD statement.

file

An organized collection of related data. Under TRSDOS, a file is the
largest block of information which can be addressed with a single
command. BASIC programs and data sets are stored on disk in
distinct files.

file extension

An optional field in a file specification, consisting of a / followed by
one alphabetic and up to two alphanumeric characters; the
extension can be used to identify the file type, e.g., /BAS, /TXT,
/CIM, for BASIC, text, and core image, respectively.

Y N TR S TSP T OO T T e e SR e e e e e e e e,

8-6

Appendices

filename

A required field in a file specification, consisting of one alphabetic
followed by up to 7 alphanumeric characters. Filenames are assigned
when a file is created or renamed.

file specification or filespec

A sequence of characters which specifies a particular disk file under
TRSDOS, consisting of a mandatory filename, followed by an
optional extension, password, and drivespec.

foreground task

A relatively fast routine which the Computer must execute
periodically, in sequence with other foreground tasks. Such
tasks are interrupt-driven. See background task, task, interrupt.

format

To organize a new or magnetically erased diskette into tracks and
sectors, via the TRSDOS FORMAT utility. BACKUP also implicitly
formats a blank diskette. Formatted diskettes contain 35 tracks,
each of which contains 10 sectors.

granule

The smallest unit of allocatable space on a disk, consisting of
5 sectors.

hexadecimal or hex

Capable of existing in one of 16 possible states. For example, the
hexadecimal digits are 0,1,2,..,,9,A,B,C,D,E,F. Hexadecimal
(base-16) numbers are sequences of hexadecimal digits. Address and
byte values are frequently given in hexadecimal form. Under DISK
BASIC, hexadecimal constants can be entered by prefixing the
constant with &H.

increment

The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input

To transfer data from outside the Computer (from a disk file,
keyboard, etc.) into RAM.

87

Appendices

interrupt

A signal which causes the Computer to interrupt whatever it is doing
and perform some other specified task; when the task is completed,
the Computer will generally resume execution of the previous task.
The TRS-80 Expansion Interface includes a 25 millisecond
“heartbeat” interrupt, which is used to drive the real-time clock and
other foreground tasks. Interrupt-driven tasks can be scheduled and
assigned priorities, so that the Computer appears to be doing two

or more things ““at once”.

kilobyte or K
1024 bytes of memory. Thus a 12 K ROM includes 12¥1024=12288
bytes.

library commands

A set of overlayed TRSDOS commands which are overlayed as
needed into RAM between 5200 and 6FFF, to see which library
commands are available, use the TRSDOS LIB command:

LIB <EN>

logical expression
An expression which is evaluated as either True (=-1) or FALSE (=0).

logical record

A block of data which contains from 1 to 256 bytes, and can be
addressed as a unit, regardless of whether the logical record is
contained in a single record or spans two physical records.

machine language

The Z-80 instruction set, usually specified in hexadecimal code. All
higher-level languages must be translated into machine-language in
order to be executed by the Computer.

null string

A string which has a length of zero; For example, the assignment
As = oo

makes A$ a null-string.

object code

Machine language derived from “‘source code”, typically, from
Assembly Language.,

8-8

Appendices

octal

Capable of existing in one of 8 states, for example, the octal digits
are 0,1,...,7. Octal (base-8) numbers are sequences of octal
digits. Address and byte values are frequently given in octal form.
Under DISK BASIC, an octal constant can be entered by prefixing
the octal number with the symbol &O.

open
To prepare a file for access by assigning a sequential input,
sequential output, or random I/O buffer to it.

output

To transfer data from inside a Computer’s memory to some external
area, e.g., a disk file or a line printer.

overlay

To replace one block of code in RAM with another block. Also, the
code which replaces the previous contents of RAM. For example,
the TRSDOS system routines are stored on disk and loaded into a
common area of RAM as overlays.

parameter

Optional information supplied with a command to specify how the
command is to operate. TRSDOS parameters are placed inside
parentheses.

password

An optional field in a filespec consisting of one alphanumeric
followed by up to 7 additional alphanumeric characters. If a file
is created without a password, 8 blanks become the default
password. To access a file, you must specify the password in the
filespec.

Using the TRSDOS ATTRIB command, you can assign both update
and access passwords; the access password will grant only a

limited degree of access, while the update password grants total
access to the file. See filespec.

physical record

The smallest amount of data which can be written to a disk file or
read from it; under TRSDOS, physical records consist of 256 bytes.
Note that physical record length can be ignored by the assembly-
language programmer, since TRSDOS supports logical records of
from 1 to 256 bytes in length.

89

Appendices

prompt

A character or message provided by the Computer to indicate that
it’s ready to accept keyboard input.

protected file

A disk file which has a non-blank password, and therefore can only
be accessed by reference to that password.

protection level

The degree of access granted by using the access password: kill,
rename, write, read, or execute.

random access memory or RAM

Semiconductor memory which can be addressed directly and either
read from or written to. “User RAM™ is that portion of RAM which
is left untouched by TRSDOS and DISK BASIC code, from hex 7000
to end of memory.

real-time clock

An interrupt driven routine that keeps time by updating certain
memory locations every 25 milliseconds, regardless of what the
current background task is. At power-on, the real-time clock is set
to 00:00:00. When interrupts are disabled, the clock is stopped.

reset

To press the reset button on the rear left of the TRS-80, next to the
Expansion Interface connection. Pressing reset is equivalent to
powering up the Computer, except that the contents of user RAM
are unaffected.

resident system program

That part of TRSDOS which remains in RAM; the “executive
TRSDOS program™, which calls in other TRSDOS code as needed.

read-only memory or ROM

Pre-programmed semiconductor memory which is directly
addressable but can only be read, not written to. The LEVEL 1l
TRS-80 includes 12K of ROM, where a bootstrap program,
LEVEL II BASIC, and other code are permanently stored.

routine

A sequence of instructions to carry out a certain function; typically,
a routine may be called from multiple points in a program. For
example: keyboard scan routine.

8-10

Appendices

sector

One-tenth of a track on a diskette, containing 256 bytes of storage;
a TRSDOS “‘physical record”.

sequential access

Reading from a disk file or writing to it “from start to finish™,
without being able to directly access a particular record in the file.

statement
A complete instruction in BASIC.

string

Any sequence of characters which must be examined verbatim for
meaning: in other words, the string does not correspond to a
quantity. For example, the number 1234 represents the same
quantity as 10004234, but the string *“1234" does not. (String
addition is actually concatenation, or stringing-together, so that:
"“1234" equals “1" + 2" + “3"" + "4"),

system file

A TRSDOS disk file with the extension /SYS. Such files are
read-protected. To avoid confusion, don’t use the extension /SYS
on your own disk files.

syntax

The *“‘grammatical” requirements for a command or statement.
Syntax generally refers to punctuation and ordering of elements
within a statement. See ‘““Notation Conventions”, General
Information, for a description of syntax abbreviations used in
this manual.

task

A relatively fundamental routine which the Computer performs
periodically or upon request.

track

One of 35 concentric circles on the disk, each of which contains
10 sectors, or 2560 bytes of storage. The tracks are not physical
entities like grooves on a record; they are magnetic traces.

transfer address
See entry point.

TRSDOS

TRS-80 Disk Operating System, pronounced “‘triss-doss™.
TRSDOS is supplied on disk and is then loaded into RAM.

811

Appendices

user RAM or user memory
See random access memory.

utility

A program or routine which serves a limited, specific purpose.
There are two extended TRSDOS utilities, FORMAT and BACKUP,
and two non-TRSDOS utilities, DISKDUMP/BAS and TAPEDISK.

write-protect

To physically protect a disk from being written to by placing a tape
over the write-protect notch.

8-12

Appendices

Memory Map

/ v
X’0000 1 K ROM
X’0400
11 K ROM
X'3000
“ON-BOARD"
MEMORY I/0
X'4000 x
X'4200
X'5200
16 K RAM
I""-—.
|
| X"7000
|
_ ‘I,
-~ x'8000
16 K RAM
EXPANSION
INTERFACE -
16 K RAM
X'FEEF

1/0 DRIVERS AND BOOTSTRAP

LEVEL Il BASIC/DISK BASIC

MEMORY MAPPED 1/0

BASIC VECTORS

TRSDOS

DISK BASIC
TRSDOS UTILITIES
USER MEMORY

GENERAL PURPOSE
USER MEMORY

AUXILIARY USER MEMORY

AUXILIARY USER MEMORY

813

Appendices

TRSDOS Character Tables

Bit-Pattern Codes

The following table illustrates the bit pattern for each of the 128
TRSDOS characters. The remaining 128 codes represent special
graphics and space compression characters, as described later.
See Notes.

To use the table: Combine the most significant and least significant

bit-patterns for a given character. For example, the character Q
is represented by the pattern: 1010001 (decimal 81).

MOST SIGNIFICANT BITS

(by — bg)
000 001 010 011 100 101 110 111
0000 | NULL DLE sP [o @ | p @ | p
LEAST 0001 BREAK DC1 ! 1 Al ala q
SIGNIF. 0010 STX DC2 o 2 B R b r
BITS 0011 ETX DC3 # | 3 o S c s
by — by) 0100 EOT DC4 $ 4 D | T d t
0101 ENQ NAK % 5 E U e u
0110 | AcK SYN & | 6 F v | ¢ v
0111 BEL ETB ’ 7 G| w|a w
1000 BKSP CAN (8 - X h x
1001 HT EM) 9 i Y i y
1010 | LF SUB . J z | i z
1011 VT ESC + K + k | 4
1100 |FF HOME <y Y
1101 CR BOL — = M - m | -
1110 | CURON | EREOL i S| N] n |
1111 CUROFF | EREOF / ? 0o |—| o |DEL

814

Appendices

Decimal/Hexadecimal Codes

Code Code Code
Dec. Hex Char. Dec. Hex. Char. Dec. Hex. Char
0 00 NULL 32 20 SPACE 64 40 @
1 01 BREAK 33 21 ! 65 41 A
2 02 STX 34 22 " 66 42 B
3 03 ETX 35 23 # 87 43 c
4 04 EOT 36 24 $ 68 44 D
5 05 ENQ 37 25 % 69 45 E
6 06 ACK 38 26 & 70 46 F
7 07 BEL 39 27 ’ 7 47 G
8 08 BKSP 40 28 { 72 48 H
9 09 HT a1 29) 73 49 I
10 DA LF 42 2A ¢ 74 4A J
1 0B VT 43 2B + 75 4B K
12 oc FF 44 2c J 76 ac L
13 oD CR 45 2D - 77 4D ™
14 OE CURON 46 2E . 78 AE N
15 OF CUROFF 47 2F / 79 4F 0
16 10 DLE 48 30 0 80 50 P
17 1 DC1 49 31 1 81 51 Q
18 12 DC2 50 32 2 82 52 R
19 13 Dc3 51 33 3 83 53 S
20 14 DC4 52 34 - 84 54 T
21 15 NAK 53 35 5 85 55 u
22 16 SYN 54 36 6 86 56 \%
23 17 ETB 55 37 7 87 57 W
24 18 CAN 56 38 8 88 58 X
2% 19 EM 57 39 9 89 59 Y
26 1A suB 58 3A : 90 5A z
27 18 ESC 59 38 : 91 58 #
28 1C HOME 60 3C < 92 5C
29 1D BOL 61 3D = 93 5D -
30 1E EREOL 62 3E > 94 SE -
31 1F EREOF 63 3F ? 95 5F —_—

Note: 96-127 (hex 60-7F) are lower-case counterparts to 64-95 (hex 40-5F).; only
upper-case characters are displayable,

8-15

Appendices

Notes

The TRSDOS character set may be subdivided into the following
functional groups:

decimal code hex code function

0-31 00-1F Control characters

32-95 20-5F Keyboard/display characters

96-127 60-7F Non-printing characters (code-32 is printed)
128-191 80-BF Graphics characters

192-255 CO-FF Space-compression codes

The following control characters may be entered directly from the
keyboard:

character

BREAK
BKSP
HT

LF

CR
CAN
EM
SUB
ESC
EREOF
SP

816

Appendices

For a description of the graphics characters, run the following
program. If you do not have a line printer connected, change
all LPRINTSs to PRINTSs and use the shift-@ key to pause the
display.

18 CLS: DEFINT R-2Z

28 FORI=128 TO 151

38 POKE 15368, I

35 LPRINT CHR$(1z2)

48 LPRINT"GRAPHICS CODE # "; 1

45 LPRINT CHR$(1328)

58 A1=POINT(@.8): AZ2=POINT(L, @)

€8 AZ=POINT(8, 1): A4=POINT(L, 1)

78 AS=POINT(@, 2): AG=POINT(1.2)

88 LPRINTTRB(B)CHR$ (Aix(-4@)+48); CHRE(AZ*(-48)+48)
98 LPRINTTAB(B)CHR$(AZ*(-48)+48); CHR$(Ad*(-48)+48)
188 LPRINTTRBC(E)CHR$(AS*(-48)+48); CHR$(RE*(-48)+48)
118 NEXT

The space-compression codes provide a compact means of
representing strings of blanks from zero to 63 blanks.

For example, CO represents zero blanks; C1, 1 blank; C2,
2 blanks; FF, 63 blanks.

817

Appendices

Base Conversions

The following table lists base conversions for all one-byte values.

DEC. RINARY HEX. OCT. DEC. BINARRY HEX. OCT
@ eRBERBE B aa6a 43 @0101641 2B 852
1 GR0B0Ra1 61 Pe1 44 pe1e11e8 2C 854
2 A0a0RR1E @2 @Bz 45 Pa1@1161 20 @55
3 AePEeR11 83 Paz 46 AP101116 2€ @56
4 0000100 04 aad 47 88101111 2F 857
5 00006101 @S 005 48 0PB1100G6 20 868
6 06000116 86 Bas 49 @8118881 31 861
7 peRaG111 @7 aa7 S8 @8116018 32 862
8 @oooloea @8 810 54 eeiiesil 33 863
9 00081681 @9 a11 52 ©9119108 24 864
1@ PAGO1618 OR 812 53 @e11e1e1 35 865
11 PaGa1611 9B 812 54 30116118 36 866
12 00081188 6C @14 55 98118441 37 a67
1 0@e81181 8D 815 56 09111608 38 a7e
14 AP001116 ©8E 816 57 @e11i@81 29 a71
15 ooeeiiil oF @17 S8 @e111918 2A arz
16 ooelooed 1@ 028 59 80111611 3B ar2
i7 Gpeipeel 11 621 60 aa1i11@8@ 2C ar4
18 @Geele0106 12 822 61 e9111181 3D a7s
19 fegieeil 1z @23 62 @0111118 3E are
28 oceeleies 14 624 63 8111111 3F are
21 #8e16161 15 825 64 A1PeEARE 40 16@
22 gaaiaiie 16 aze 65 91060061 41 181
22 peBie111 17 az7 66 g10p0818 42 182
24 @eellese 18 aze 67 ele@ail 43 183
25 Bepii661 19 821 68 31000106 44 104
26 99011918 1A 832 69 @1088181 45 1685
27 @eee11811 1B 832 28 91008118 46 106

28 @oe11168 1C 834 74 91000111 47 167

29 ©@epiii81 1D @35 Mo Gmeus & 167
¥ emetius ox 7 olootost 45 1t

74 @10@1018 4R 112
22 0P166BE0 20 040 A Mmes a

32 0o16ee81 21 841 76 010091108 4C 114
34 o@leeoid 22 842 77 91891181 4D 115
25 pa166611 232 g4z 78 A1681118 4E 116
36 boleaies 24 844 79 91801111 4F 117
37 paiea1pl 25 845 80 P1610808 S0 128
38 00100418 26 846 81 e1Mee81 51 121
39 eo1eai11 27 047 82 oi@iee18 S2 122
48 00101688 28 @50 83 o10de9d1 52 122
41 epieieel 29 251 84 91010160 54 124
42 091810616 2R 852 85 @1819161 55 125

N - o e S e

818

161
1az
1@z
a4
185
186

1@y
1ag

11@
111
112
113
114
115
11e
117
118
115
1268
i1
122
123
124

1z2e
127
izg
128
134
1z1
132
133

aia1a118
A1a16111
81611660
a1@11601
aiaiied6
al1611011
81611166
a1e11161
@1811118
gie11111
#1106666
a1168aeal
@1166610
21166611

81168166
a11eEi6l
aiiae11a
B1iee111
B1i1a106a
a11a1@al1
81181618
81181811

@11@8116@
g1161161

81161116

@11@1111
@111666a

31116681

e111661@
Bliie6il
#111616a
a11iaial
81116116
#i1i16111
@1111666
ai111661
a1111e1@
81111811
1111168
a11111@a1
ai11111@
81111111
16066800
10666601
16066618
1068668811
16066160
16a0ai01

a8z
gz
84
a5

DEC. BINARY

124 16@0a11a
135 10666111
126 1p@el66a
137 1eaaisal
138 16e@iadia
139 18@881811
148 1o6@i108
141 1e8aiiel
142 10861116
14z 41e@eii11
144 16816060
145 1@aileeel
14e 1v6isale
147 1o@iaeil
1485 10e@lalas
149 1aedeial
1568 168i6iia
151 1eade1dd
152 18811664
152 1eeiie61
154 106116106
135 1eédiedd
15¢ 16811168
157 1@ei11iei
158 19811116
159 1@e11111
168 16166060
lel 161660861
162 18166618
162 1oieeE11
led4 1@i68160
165 106186161
166 181881414
167 1@ie6iii
168 18181606
169 1@iedaei
176 18181618
171 1eisieil
172 16161160
172 18dei1ed
i74 16181118
175 1e1e1111
176 18116668
177 1ei1ee61
iv8 1@iieaie
179 18116611
186 1ed1e166
181 18116461
182 186118110

Appendices

261
262
263
264
265
266

8-19

Appendices

DEC. BINARY HEX. OCT. DEC. BINARY HEX. OCT.
182 1e116411 267 219 11ei1iei1 DB 333
184 10111068 278 2280 1ie141e@ DC 334
185 1edii6e1 271 221 1ie11184 DD 335
ige 1@1iiedie 272 222 11811118 DE 326
187 1@111841 273 223 11811111 DF 337
188 10111106 274 224 11166688 EO 34@
189 1ed41i1ed 275 225 iiieeesi E1 341
i%8 18111116 276 226 11166618 E2 242
191 18111111 277 227 1118ee11 E3 342
152 1i@easoe 300 228 1iieeiee E4 344
193 1iecaeal 31 229 1i1@eie1 ES 345
194 110066818 382 238 11186118 E¢ 346
195 11e@@@ei1 KX 231 11188111 E7 247
196 11000100 - 232 11161008 E8 350
197 11600101 305 233 1iieieei ES 351
198 11900110 206 234 11161818 ER 332
199 1168881141 207 235 111e1e11 EB 353
o8B 11001808 1@ 236 1iledies EC 354

237 11184161 ED 333

281 11881881 311 238 11181118 EE 356
262 11061010 312

239 111e1141 EF 257
283 118010411 213

248 11110608 F@ 260
204 11001160 314

241 11116801 Fi 261
285 11881101 315

242 11116018 F2 262
206 11881116 316

243 11118811 F3 263
2867 11681111 317 244 11118188 F4 364
288 11@i6808 320 5

321 245 1111ed1e1 FS 265

283 1i@iesed 246 11118118 Fe 366

FEEORRERMERR3BR SRGRNRESRRBEREERS

218
1ieieeie 322 247 1111@411 F7 367

211 11810041 323

249 11111088 F8 370
212 11016160 324 :

249 11141684 F9 371
213 11616161 S 250 11111616 FA 372
214 11810110 326

215 11e1@111 07 327 251 11111e11 FB 373

216 16160 D3 33 2 ausm f 37
217 11611601

331
254 14114118 FE 376
218 11811618 332 255 14111111 FF 377

33

8-20

Index

for

TRSDOS &
DISK BASIC

Reference
Manual

XmMOE—

For: TRSDOS Version 2.3
DISK BASIC Version 2.2

Index

Subject Page
&H, BASIC hex constant prefix 7-6
&0, BASIC octal constant prefix 7-6
< EN> | carriage return character 742
< LF >, line-feed character. 742
RECOER. - o o 5o w6 3 W 5 B s 8-2

random................ 7-70, 8-11

sequential 7-63, 8-10
address 82
alphanumeric 8.2
BIEUMENL. + . & « o cwcmmommin o n v 5 % 0 o o 8-2
BTN v v a v s R B R EEERE S AT RS v 8-2

-notation 14
ASCILcw sis v 55 5 5 8 imivieiins v mn n g 82

format. 7-36, 8-2
assembly-language

I/O,TRSDOS................ 6-5

access from BASIC 7-16, 7-24
APPEND, TRSDOS command 4.2
ATTRIB, TRSDOS command 4
AUTO, TRSDOS command. 4-2
BACKUP, TRSDOS utility

abbreviated instructions for. 2-16

detailed descriptionof 5-2

Important Notice 2-17
background task 8-2
backupdisk, 8-3
Base Conversions,

decimal/binary/octal/hex 8-18
BASIC, TRSDOS

command file 4.6,1-2,34,7-2
BASIC2, TRSDOS command. 4-6
BASICR, TRSDOS command 4-7
baud., 8-3
DINBEY:. & & wovvisis &5 55 % 5 8wl vieials £ 4 & 5 8-3
BRE « o 5 0 s cseue o ¥ 5 8 6 5 6 RS 8 € @ 8-3
blocking of logical records

under TRSDOS. 6-3,6-7
bootstrap program. 8-3
biesk: . coavnaraa s 5 5 5 8 8w 6 SR E 8 s 8-3
buffer........... 6-5, 6-6,7-2, 7-37 {1, 8-3
DVIR : & sunnnisias 5 5 5 & 5 & 5 BEEEEIEE 5§ § 84

cassette 1/O under

DISKBASIC 7-6,7-12

Subject Page
CLOCK, TRSDOS command. 4-8
clock, real time, see real-time clock
CLOSE, BASIC statement. 7-40
doseafile. . .cuiins s 6-11, 740, 8-4
CMD“D”, BASIC statement 7-8
CMD*R”, BASIC statement 7-12
CMD*S”, BASIC statement. 7-12
CMD“T”, BASIC statement. 7-12
command

tileecic s 5 55 % v 5 5 9 0 wmnge ; 37,84

format. 3-5
compressed format, BASIC 7-35, 8-4
COPY, TRSDOScommand 9
CVD, BASIC function 7-58
CVI,BASIC function 7-58
CVS, BASIC function. 7-58
data 8-4
data/device control block

(DCB). 6-6,8-4
data diskette. 54
DATA, TRSDOS command. 49
DEBUG, TRSDOS command. 4-10
AeBUE : ¢ covcvswn s 5 5 55 5 2 5 5 SmEe o 3 8-4

checkout utilities 5-11, 5-12
decimal: coiimenca v v i 655 % nmmeines 8-5
default 8-5
delimiter,. 6-6, 8-5

BASICINPUT # 7-41
DEFFN, BASIC statement 7-13
DEFUSR, BASIC statement 7-16
destimation. 8.5

diKORte o sic v s s T o e 5-2
DEVICE, TRSDOS command 4-17
device 8-5
DIR, TRSDOS command,. 4-17
directory, 8-5
DISK BASIC

EITOr MesSages. 7-77

ROMecalls 7-22

versions and releases. 1-6

Subject Page
DISKDUMP/BAS, auxiliary
utility program 5-8 ff
diskette,
1+ O T 2-10
TRSDOS software. 2-10
diskette, . . .vccsE s s ansas 2-5 ff, 8-5
CATE . i v v v et et e e e 2-8
organmization. 2-6,6-2
specifications 2-10
divenumiber s o5 pvoeies s ¥ s 8-6
diive HUMbeHNE . . . <« s s ey e e s 2-5
drive specification 3-6, 3-8, 8-5
AEVEZEID. & o v o v w v wrawmm s s 5 oo ei 2-5
dummy variable 8-6
DUMP, TRSDOS command. 4-20
end of file
(BOE); = 4 v 4-18, 6-6, 6-9, 7-55, 8-6
entry point. 4.20, 5-6, 6-8, 7-14, 8-6
EOF, BASIC function 7-59
ERROR, BASIC statement 7-6
€ITOT Mmessages.
BASIC, ccovsvirn su v 8 v 55 u e v 7-6,7-82
TRSDOS 6-12
eXPIEession i es s aen e 8-6
FIELD, BASIC statement 7-51
e ..o i 5 55 5 5§ SERASEEY 7 2 8-6
overlappingcchcenno 7-81
fieldname 7-52,7-72, 8-6
file, TRSDOS . . : . o5 covnune 3-3,6-31f, 8-6
extension. 3-6 ff, 7-36, 8-6
11 1)) - 3-6, 8-7
specification. 3-6 ff, 6-6, 8-7
foreground task. 3-2,4-16,4-25, 8-7
FORMAT, TRSDOS utility. 5-4 ff
FORAAY: ¢ o o500 s waramm e e s 4 6 4 5-4 ff, 8-7
FREE, TRSDOS command 421
GET, BASIC statement. 7-53
granule 4-18, 4-21, 54, 6-3,6-12, 8-7
Tiekadeohnll: & o e 55 5 5 5 5 6 e 8-7
constants, BASIC 7-6
IHETEMIBTIL: & o vsriroie v 4 v & § W 5 4 oreses 8-7
1074111 S U S L 8-7
INPUT #, BASIC statement 741

T — e | e e C———

Subject Page
INSTR, BASIC function. 7-17
HHBELOPE v ovsimszw o« % 51 > # = winss 7-5,7-12, 8-8
KILL, BASICcommand 7-32
KILL, TRSDOS command 4-21
kilobyte. it iiinanna.n 8-8
LIB, TRSDOS command. 4-21
LINE INPUT, BASIC statement. 7-18
LINE INPUT #, BASIC statement 746
LIST, TRSDOS command. 4-22
LOAD, BASIC command 7-32
LOAD, TRSDOS command. 4-22
LOF, BASIC finction ..o 66 6%% 355 @ 7-60
LSET, BASIC statement. 7-57
machine language, 8-8
dump todisk . v o v v v e e ol 4-20
load fromdisk 4-22
reserve RAMfor 7-3
access routines from
BASIC. 7-16, 7-24
Master Password 4-23,5-2
MERGE, BASIC command 7-33
MID$=, BASIC statement 7-19
MiniDisk. 2-1 ff
COMNBEHON.: « < v sovvms v v v e s v s 2-3
OPEIAtION. © . » v cine s s 5 5 05585 2-
specificationsl 2-10
MKDS, BASIC function 7-61
MKIS, BASIC function. 7-61
MKSS, BASIC function 7-61
NAME. .5 20350 nwmmmaes #5 6o aum 7-21
Notation 1-3,6-5
NOIEHNE: - « s s v m 8 6955 3 6 2 BEw 8-8
object code: . . .covviia s 8-8 and see machine
language
OetRl, : ;o i s s s s w s ws a e s 89
constants, BASIC . :::: 56 wamaes 7-6
OPEN, BASIC statement. «vvve v 7-38
openafile 6-6, 6-9, 7-37, 7-38, 8-9
PATATNBLEE . covricnca o 5t 6 0 6 5 5 0 @ wsmmciniene o 8-9
password 3-6, 3-8,4-3,4-23,89
PRINT, TRSDOS command 4-23
PRINT #, BASIC statement 747

Index

Subject Page
PIOMPE . o oot e 8-10
PROT, TRSDOScommand 4-2
protected file 6-12,8-10
protection level. 4-3,4-24,8-10
PUT, BASIC statement. 7-54
TANAdOBT ACERSE o v v v v 5 5 5 3 5 TwRmaw & & 7-70
random access memory (RAM) 8-10
allocation. . i s v s v 4 s 1-2, 3-4,6-2
random access memory (RAM),
BASIC program storagein. 7-36
reserving for machine language code
under DISK BASIC 7-3
read only memory (ROM). 8-10
calls fromBASIC. 7-2
calls fromTRSDOS 6-8 ff
organmization. -2
reai-time clock,
in Expansion Interface 1-2
memory locationof. 4-16
Wodisplay. i sssmmsssas s e g a0 4-8
TOSE . oo 4-25
to IO . cirvnmny v 8w 5 v waee 7-12
LOtUIMON . . v v vv v e e e ee e s 7-12
record, TRSDOS
physical. 64, 6-7, 89
Mofca . .. vovumre v v s w8 s s was 6-7, 8-8
1)1 R R T 1-6
RENAME, TRSDOS command 4-24
FOBB w moiniia 62 8 ¥ ¥ 0 6 5 RISt § © 8-10
resident program. 34,8-10
ROM (see read only memory)
RSET, BASIC statement. 7-57
RUN*“program”, BASIC command 7-35
SAVE, BASIC command. 7-35
SEotor, diSketto . sy s v v v v v 2-6,8-11
sequential access 7-63,8-11
statement, BASIC 8-11

Subject Page
SIING . . . e 8-11
Sabreeords - ;o v s weniEaE s B E 8§ s S 7-76
SYNEAX, . . oottt e 8-11
TRSDOScommand 3.5
system
g cssssasannmiiaug e 3.7, 8-11
TOULINe vv it ie e e e s 6-5 ff
TAPEDISK, auxiliary utility 5-6
task,
Background ... a5 855 5955w 8-2
foreground. 3-2,4-16,4-25, 8-7
TESTT & . nsmsnss 55565808 s wmm 5-11
TEST2 . .. e 5-12
TIME, TRSDOS command 4-25
TIMES, BASIC function. 7-23
TRACE, TRSDOS command. 4-25
transfer address. 4-20, 8-11
track, diskette. ... cov v oo s 0w nm 2-6, 8-11
TRSDOS
ol 7 0] {311 | SRR Uy s e 5-11
commands 4.1
asseintbly O . - L. o ceaimean 6-5 ff
eITOT MESSAZeS. oo v v wwnsn 6-12
file specification 3-6
memory organization. 6-2
RAM allocation.34,8-13
WHITEES v o5 et b £ 0§ 3 5-1 ff
versions and releases. 1-6
USING, BASIC PRINT
format Modifer: « . ovovmn iox v s w 7-50
USR, BASIC function 7-24
utility
TRSDOS 5-2
alARY s s v e s s s s e s 5-6
VERIFY, TRSDOS command 4-26
versions and releases. 1-6
WIEPEOTOBE. © . . & 5 scise: o % 5 5 5 6 5 o o 2-6

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
“AS IS” BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by

Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resulting from the use
or operation of such computer or computer programs.

NOTE: Good data processing procedure dictates that the user test the program,
run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

LIMITED WARRANTY

Radio Shack warrants for a period of 90 days from the date of delivery
to customer that the computer hardware described herein shall be free
from defects in material and workmanship under normal use and service.
This warranty shall be void if this unit’s case or cabinet is opened or if
the unit is altered or modified. During this period, if a defect should
occur, the product must be returned to a Radio Shack store or dealer
for repair. Customer’s sole and exclusive remedy in the event of defect
is expressly limited to the correction of the defect by adjustment, re-
pair or replacement at Radio Shack’s election and sole expense, except
there shall be no obligation to replace or repair items which by their
nature are expendable. No representation or other affirmation of fact,
including but not limited to statements regarding capacity, suitability
for use, or performance of the equipment, shall be or be deemed to be a
warranty or representation by Radio Shack, for any purpose, nor give
rise to any liability or obligation of Radio Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-
POSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR
LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL, CONSE-
QUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACK gA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM u. K
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE, N.S.W. 2116 5140 NANINNE WEST MIDLANDS WS10 7UN

PRINTED IN US.A.

